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ARTICLE

Multi-locus genome-wide association studies (ML-GWAS)
reveal novel genomic regions associated with seedling and
adult plant stage leaf rust resistance in bread wheat
(Triticum aestivum L.)
V. K. Vikas1,7, Anjan Kumar Pradhan2,7, Neeraj Budhlakoti3✉, Dwijesh Chandra Mishra3, Tilak Chandra2, S. C. Bhardwaj4, Subodh Kumar4,
M. Sivasamy1, P. Jayaprakash1, R. Nisha1, P. Shajitha1, John Peter1, M. Geetha1, Reyazul Rouf Mir 5, Kuldeep Singh2,6 and
Sundeep Kumar2✉

© The Author(s), under exclusive licence to The Genetics Society 2022

Leaf rust is one of the important diseases limiting global wheat production and productivity. To identify quantitative trait
nucleotides (QTNs) or genomic regions associated with seedling and adult plant leaf rust resistance, multilocus genome-wide
association studies (ML-GWAS) were performed on a panel of 400 diverse wheat genotypes using 35 K single-nucleotide
polymorphism (SNP) genotyping assays and trait data of leaf rust resistance. Association analyses using six multi-locus GWAS
models revealed a set of 201 significantly associated QTNs for seedling and 65 QTNs for adult plant resistance (APR), explaining
1.98–31.72% of the phenotypic variation for leaf rust. Among these QTNs, 51 reliable QTNs for seedling and 15 QTNs for APR were
consistently detected in at least two GWAS models and were considered reliable QTNs. Three genomic regions were pleiotropic,
each controlling two to three pathotype-specific seedling resistances to leaf rust. We also identified candidate genes, such as
leucine-rich repeat receptor-like (LRR) protein kinases, P-loop containing nucleoside triphosphate hydrolase and serine-threonine/
tyrosine-protein kinases (STPK), which have a role in pathogen recognition and disease resistance linked to the significantly
associated genomic regions. The QTNs identified in this study can prove useful in wheat molecular breeding programs aimed at
enhancing resistance to leaf rust and developing next-generation leaf rust-resistant varieties.

Heredity; https://doi.org/10.1038/s41437-022-00525-1

INTRODUCTION
Wheat is one of the major staple food crops contributing to 20%
of the dietary calories to humans globally (Shiferaw et al. 2013). It
is affected by several foliar diseases, of which rust diseases,
including leaf or brown rust, stem or black rust and stripe or
yellow rust are important. Leaf or brown rust (LR) caused by
Puccinia triticina Eriks. (Pt) is considered one of the most
devastating diseases of wheat, as it causes a substantial reduction
in yield by reducing the number of kernels per ear and kernel
weight (Bolton et al. 2008; Marasas et al. 2004). Leaf rust infection
during the early stages of crop growth can cause more than 50%
yield losses (Huerta-Espino et al. 2011). It is widespread
throughout wheat-growing regions of the world, mainly due to
its wide adaptability and causes various levels of damage
(McCallum et al. 2012). In India, LR is commonly prevalent in all
wheat growing regions, as the disease is favored by intermediate
temperatures. The development of disease-resistant wheat

cultivars is considered the most effective and economic strategy
for protecting against yield losses due to LR.
To date, 80 genes for resistance to leaf rust (Lr) have been

cataloged (McIntosh et al. 2020). However, not all of them have
been successfully utilized in wheat breeding programs. Most of
the Lr genes identified thus far confer qualitative resistance,
which is race-specific and results in a hypersensitive response or
cell death upon infection. This type of resistance is known as
vertical or seedling resistance (SR), where the resistance gene in
the host and the avirulence gene in the pathogen develop
incompatible interactions (Flor 1956). However, such resistance is
short-lived due to its breakdown by the new virulent races.
Frequent shifts in the virulence pattern of the pathogen have
often led to the repeated breakdown of major R genes (McDonald
and Linde 2002). In contrast, adult plant resistance genes are race
non-specific genes conferring quantitative resistance known as
horizontal resistance. This resistance is controlled by genes with
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small effects providing long-term resistance (Johnson 1984) and
reduced susceptibility. The majority of Lr resistance genes
reportedly confer leaf rust resistance in the seedling stage and
are race-specific (McIntosh et al. 2017), except for a few genes,
such as Lr34/Yr18/Sr57, Lr46/Yr29/Sr58, Lr67/Yr46/Sr55 and Lr68
(McIntosh et al. 2017), which are adult plant resistance genes
and are race non-specific. The combination of both seedling (SR)
and adult plant resistance (APR) genes can strengthen the
durability of resistance to LR (Ellis et al. 2014; Kumar et al. 2019).
Molecular marker-assisted selection schemes have been applied
to combine SR and APR genes to develop improved resistance to
LR in wheat.
The constant selection pressure imposed on the pathogen

along with long-term deployment of varieties with single major
resistance genes has led to the emergence of new races (Kolmer
2013). This has necessitated the need to hunt for new sources of
resistance genes to enhance resistance to emerging races (Kertho
et al. 2015). Several studies have demonstrated that potential
sources for new LR resistance exist in wheat landraces, wild
relatives, etc. (Reif et al. 2005). Fortunately, diversity in the form of
cultivated and wild accessions, including landraces, are stored as
collections in the Genebank. Such diversity needs to be harnessed
for the identification of novel resistance that can be utilized in
wheat improvement.
Numerous QTLs for LR have been identified thus far using the

traditional QTL mapping methodologies that identify the under-
lying genetic variation using bi-parental mapping populations
(Bokore et al. 2017). However, there are several limitations
associated with QTL interval mapping, including the long time
required for the development of bi-parental mapping populations,
less diversity sampled, and low resolution (Zhu et al. 2008; Mir
et al. 2012; Gupta et al. 2012). The genome-wide association
approach provides a good alternative approach for the identifica-
tion of novel QTLs/genes for different traits, including leaf rust
resistance in wheat (Mir et al. 2012; Kulwal et al. 2022). The
availability of genome-wide genotyping data along with powerful
statistical models has led to the widespread use of association
mapping. In comparison to bi-parental linkage mapping, associa-
tion mapping is a less time-consuming approach for the discovery
of genes/QTL or marker-trait associations (MTAs). In general,
association studies are based on germplasm collections represent-
ing well-characterized populations that exhibit variation for single
or multiple traits of interest (Hall et al. 2010; Zhao et al. 2011;
Riedelsheimer et al. 2012).
The identification of QTLs in a natural population using GWAS is

possible at higher mapping resolution, as it harnesses all historical
recombinations accumulated over generations (Yu and Buckler
2006; Semagn et al. 2010; Brachi et al. 2011; Mir et al. 2012; Kulwal
et al. 2022). Population structure is taken into account by
including them as fixed-effect covariates in the association model,
as it can cause spurious associations in genome-wide association
studies (Segura et al. 2012). Thus, GWAS can be considered an
effective alternative to bi-parental linkage mapping and can be
performed on any existing panel with diversity for the trait. From
this perspective, wheat germplasm collections maintained in gene
banks could prove valuable genetic resources for hunting genes/
genomic regions using an association genetics approach. Several
traits in wheat, such as grain yield and yield-contributing traits
(Sukumaran et al. 2018; Mir et al. 2021), pre-harvest sprouting
resistance (Zhou et al. 2017; Jaiswal et al. 2012), stem rust
resistance (Muleta et al. 2017a; Edae et al. 2018; Kumar et al.
2020a), stripe rust resistance (Pradhan et al. 2020; Juliana et al.
2018; Muleta et al. 2017b; Kumar et al. 2020a), eyespot disease
resistance (Zanke et al. 2017), agro-morphological traits (Kumar
et al. 2020b; Sheoran et al. 2019) etc., have been successfully
dissected using GWAS. Few studies on association mapping for LR
resistance in bread wheat (Kertho et al. 2015; Aoun et al. 2016;
Juliana et al. 2018; Sapkota et al. 2019a; Kumar et al. 2020a;

Joukhadar et al. 2017) and durum wheat (Aoun et al. 2019) have
been previously reported.
Several statistical models have been used for association

mapping involving different approaches (Kaler et al. 2020 and
Wang et al. 2016a). Single-locus genome scans performed using
ordinary mixed models do not adequately account for large effect
loci; hence multi-locus (ML-GWAS) models were proposed as a
potential tool for addressing this issue (Rakitsch et al. 2013; Segura
et al. 2012). The ML‐GWAS models are considered efficient and
more reliable than single locus (SL‐GWAS) models for mapping
genomic regions because in ML‐GWAS models, all‐marker effects
are simultaneously estimated. Moreover, unlike SL‐GWAS models,
these do not require testing of identified associations using
stringent multiple testing corrections that generally result in
rejection of significant associations (Zhang et al. 2019). They also
have higher power to detect significant marker-trait associations
than single-locus models (Wang et al. 2016a). The multi-locus
mixed model (MLMM) introduced by Segura et al. (2012) uses
stepwise regression to incorporate the most influential markers as
cofactors and has been used successfully in several association
mapping studies to date (Danakumar et al. 2021; Lipka et al. 2013;
Sauvage et al. 2014; Vaughn et al. 2014). Some commonly used
multi-locus models include multi-locus random-SNP-effect mixed
linear model (mrMLM (Wang et al. 2016a)), iterative modified-sure
independence screening Expectation-Maximization-Bayesian least
absolute shrinkage and selection operator (ISIS EM-BLASSO
(Tamba et al. 2017)), fast multi-locus random-SNP-effect efficient
mixed model analysis (FASTmrEMMA (Wen et al. 2018)), polygenic-
background-control based least angle regression plus empirical
Bayes (pLARmEB (Zhang et al. 2017a)) and fast multi-locus
random-SNP-effect mixed linear model (FASTmrMLM (Tamba
and Zhang 2018)). In the present study, we used six ML-GWAS
models on the association mapping panel to identify novel
genomic regions associated with both seedling and adult plant
stages of leaf rust resistance. To the best of our knowledge, this is
the first attempt to identify significantly associated genomic
regions/candidate genes to leaf rust pathotypes in wheat using
multiple ML-GWAS models.
We performed a GWAS to identify genomic regions responsible

for resistance to LR from a diverse set of germplasms comprising
advance breeding lines (189), landraces (186), and cultivars (25)
using the 35 K single nucleotide polymorphism (SNP) array-based
on seedling and adult plant stage leaf rust responses under
controlled and natural field conditions, respectively. The identifi-
cation of wheat genomic regions that influence LR resistance will
improve our understanding and facilitate the development of LR
resistant wheat cultivars.

MATERIALS AND METHODS
Germplasm/Plant materials utilized
A total of four hundred (400) bread wheat accessions comprising advance
breeding lines (189), landraces (186) and cultivars (25) obtained from ICAR-
National Bureau of Plant Genetic Resources (NBPGR) were used in the
association mapping panel for this study. This rust association mapping
panel was evaluated against Puccinia triticina for leaf rust both at the
seedling stage in controlled conditions and at the adult plant stage in
the field.

Seedling resistance evaluation
Wheat accessions were inoculated with four predominant pathotypes of
leaf rust, viz., 12-5 (29R45= FHTPM), 77-5 (121R63-1=THTTM), 77-9
(121R60-1=MHTKL) and 104-2 (21R55= PHTTL) under glasshouse condi-
tions at the ICAR-Indian Institute of Wheat and Barley Research (IIWBR),
Regional Station, Shimla, India. These four pathotypes were selected based
on the prominence and virulence. The seedling response test (SRT) was
performed twice (Y1 and Y2) as mentioned by Bhardwaj (2011). Among the
pathotypes present, 77-5 and 77-9 are more virulent and prevalent than
pathotypes 12-5 and 104-2 in the field, so the same pathotypes were used
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in the seedling test. The disease response was recorded as infection type
(IT), 14 days post-inoculation using a 0–4 scale (Stakman et al. 1962). The
scores were further linearized to a 0–9 scale (Ziems et al. 2014; Riaz et al.
2016) as follows: 0; = 0;-= 0.5= 1, 1-= 1.5, 1= 2, 1+= 3, 2-= 4, 2= 5,
2+= 6, 3-= 6.5, 3= 7, 3+= 8 and 4= 9. Genotypes with an IT score of 0
to <3, >3 to <6, and >6 to 9 were considered resistant, moderate and
susceptible, respectively.

Adult plant evaluations
Adult plant evaluation for LR was carried out at the ICAR-Indian Agricultural
Research Institute (IARI), Regional Station, Wellington (11°22′47.5″N, 76°46′
26.1″E), Tamil Nadu, India, which is the hot spot for leaf rust, stem rust, and
powdery mildew diseases of wheat. Wellington located in the southern
Indian Nilgiri hills is gifted with a natural environment for harboring
pathotypes of wheat rust throughout the year. Phenotypic evaluation
under natural conditions for LR was performed for two consecutive years
(2018–19 and 2019–20) in four seasons (summer - 2018 & 2019; winter -
2018–19 & 2019–20) and each environment was represented as S_E1,
W_E1, S_E2 and W_E2 based on the season and location.
In each season, accessions were planted in a non-replicated augmented

block design including three resistant (DPW621-50, HW2022 and HW5075)
and susceptible checks (Morocco, Lal Bahadur and WL711). Each accession
was planted in a single 1m row, with a spacing of 20 cm between the
rows. Resistant and susceptible checks were planted after every 20 rows of
test accessions. Moreover, susceptible checks were planted around each
plot for a continuous supply of leaf rust inoculum.
LR infections were scored thrice from the early to advance phases of

disease development in 7–10 day intervals coinciding with the beginning
of anthesis (Zadoks 60) to the dough development stage (Zadoks 85).
Recordings of LR reactions against Puccinia triticina were based on two
measures: disease severity (DS) and infection response (IR). DS was
measured using the modified Cobb scale (Peterson et al. 1948) as an
estimation of percentage coverage (0–100) of LR pustules (uredinia) on
the leaves. IR based on host response to leaf rust (pustule size) was
measured according to Loegering (1959), 0—No visible infection; R
(Resistant)—Visible chlorosis or necrosis, no uredia present; MR (Moder-
ately resistant) - Small uredia are present and surrounded by either
chlorotic or necrotic areas; MX (Intermediate) - variable sized uredia, some
with necrosis or chlorosis; MS (Moderately susceptible): Medium-sized
uredia are present and possibly surrounded by chlorotic area, S
(Susceptible): Large uredia are present, generally with little or no chlorosis
or necrosis. IR data were converted to a numeric scale of 0 to 1 (Roelfs
et al. 1992), where Immune= 0.0, Resistant (R)= 0.2, Moderately Resistant
(MR)= 0.4, Mixed response (MX)= 0.6, Moderately Susceptible (MS)= 0.8,
and Susceptible (S)= 1.
For association mapping analysis, disease severity (DS) and infection

type (IR) were combined into a single value known as coefficient of
infection (COI), which is the product of DS and IR (Loegering 1959; Roelfs
et al. 1992). The COI values ranged from 0–100, where COI values of
0–20 were considered resistant, 20–60 as moderate, and >60 as
susceptible. COI values were used for detecting QTNs (Auon et al.
2016; Kumar et al. 2020a).

Statistical analysis of phenotypic data
The statistical analysis of the phenotypic data was analyzed by statistical
analysis system (SAS) software v9.4 (SAS Institute Inc. 2017). The Shapiro-
Wilk test was conducted (PROCUNIVARIATE) to determine if the
phenotypic data for each pathotype were normally distributed. Further-
more, depending on the result from the normality test, Levene’s or
Bartlett’s test (Levene 1961; Snedecor and Cochran 1989) was performed
to check the homogeneity of data among the experiments. Broad-sense
heritability of the pathotypes was estimated using the restricted maximum
likelihood (REML) method. Pearson’s correlation in the phenotypic data of
each pathotype was calculated using the program R. Descriptive statistics
and frequency distribution were also presented to understand the
variability of pathotypes in the association panel.

DNA extraction and SNP genotyping
The genomic DNA from all 400 lines was extracted separately from 15-day
old seedlings by following the CTAB procedure (Doyle 1990). Genotyping
of the association panel was performed using a 35 K Axiom Wheat
Breeders Array according to the method described by Affymetrix (Axiom 2.
0 Assay for 384 samples P/N 703154 Rev. 2) for wheat resulting in 35,143

SNPs. All SNP markers with minimum allele frequency (MAF < 0.1),
maximum missing site per SNP > 20%, and call rate >90% were excluded
from further downstream analysis. Finally, a total of 18,932 polymorphic
SNPs were used in GWAS analysis.

Population structure and linkage disequilibrium
To examine the population structure (Q) present in the wheat panel used
in the current study, STRUCTURE v2.3.4 (Pritchard et al. 2000) was used. K
value (i.e., No. of sub-groups/sub-populations) was assumed to range from
1–10 with a burn-in of 10,0000 iterations, and 20,0000 Monte Carlo Markov
chain (MCMC) replicates were provided as initial estimates of parameters
to the STRUCTURE tool. Furthermore, a web-based utility Structure
Harvester (http://taylor0.biology.ucla.edu/structureHarvester/), which is
based on the approach of Evanno et al. (2005), was used to estimate the
optimum number of sub-groups (K) in the panel. This estimated number of
sub-groups in the genotype panel is based on maximum likelihood
estimates of the proportion of each sample derived from each of the K sub
populations. Population structure Q was also obtained for further
investigation and used in the GWAS analysis.
Intra-chromosomal LD between all possible pair-wise comparisons of

SNPs was estimated as squared allele frequency correlation (r2) using
TASSELv5.0 (Bradbury et al. 2007). The background LD in the wheat AM
panel was estimated to identify the critical distance for LD decay. The
average pattern of genome-wide LD decay over physical distance was
determined by constructing a scatter plot of r2 values against the
corresponding physical distance among the markers. Furthermore, the
extent of LD decay was estimated using the Locally Weighted Scatter-plot
Smoother (LOESS) model (Cleveland 1979). The critical r2 value that shows
the area beyond which LD is due to true physical linkage was determined
using the 95th percentile of the square root of transformed r2 data of
unlinked markers (Breseghello and Sorrells 2005). Furthermore, the
intersection of the LD decay curve was observed at r2= 0.157 and used
as a threshold.

Genome-wide association analyses
Association analyses were performed using six ML-GWAS models,
including mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, ISIS EM-BLASSO,
and pkWmEB. The FASTmrMLM method is relatively faster with higher
statistical power and accuracy in estimating QTNs compared to mrMLM
(Tamba and Zhang 2018). ISIS EM-BLASSO can detect significant
associations with the highest robustness and accuracy compared to
mrMLM and FASTmrEMMA (Tamba et al. 2017). The pLARmEB ML-GWAS
model integrates least angle regression with empirical Bayes, which
enables a more accurate estimation of significantly associated QTNs in
polygenic backgrounds (Zhang et al. 2017a). The above six models were
implemented in the R package mrMLM v4.0 (https://cran.r-project.org/
package=mrMLM) with default parameters. The QTNs with an LOD score
of ≥3.00 were considered significantly associated with both seedling and
adult plant resistance to leaf rust. Further, SNP markers that were identified
in at least two models, were designated as reliable leaf rust-associated
QTNs. Similarly, QTNs that were repeatedly detected in three or more than
three models and showed phenotypic variation (R2 > 10%) designated as
major QTNs.

Identification of potential candidate genes
To identify the potential candidate genes, SNPs (probe sequences) that
were significantly associated with seedling and adult plant stage
resistance to leaf rust pathotypes were searched using the Basic and
Local Alignment Search Tool against the reference genome of Triticum
aestivum using ensemble Plants (http://plants.ensembl.org/index.html)
with default parameters. Expressed transcripts around significantly
associated QTNs were identified, and their nucleotide sequences were
extracted. Annotation of expressed transcripts was performed using
BLAST2GO software (Conesa et al. 2005).

RESULTS
Statistical data analysis
The frequency distribution of the infection types (ITs) produced by
the four different leaf rust pathotypes, i.e., 12-5, 77-5, 77-9 and
104-2, in the association mapping panel is shown in Fig. 1. The
Shapiro–Wilk test for normality showed that the phenotypic data
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of all four studied pathotypes of leaf rust significantly deviated
from a normal distribution. Therefore, Levene’s test was
performed to test for homogeneity within experiments. The
Levene’s test results indicated that the phenotypic variance of the
data within experiments was homogenous (P= 0.63–0.91) for all
four studied pathotypes (Supplementary Table S1). Therefore, the
overall mean value was calculated for each wheat genotype and
used in the GWAS. Moreover, it was also observed that the
Pearson’s correlation coefficients (r) among all studied pathotypes
for both seedling and adult plant stages were highly significant
(p < 0.0001) (Fig. 2a, b).
For adult plant resistance, the distribution of phenotypic values

was visualized using violin plots (Supplementary Fig. S2). The
broad-sense heritability of the leaf rust infection types ranged
from 0.98 to 0.99 for the four different pathotypes at the seedling
stage and 0.99 at the adult plant stage, indicating that most of the
phenotypic variation was explained by the genotypes.

Phenotypic evaluation for leaf rust
The avirulence/virulence profile of the pathotypes for leaf rust is
presented in Supplementary Table (S2). Seedling reactions
showed significant differences among accessions for each
pathotype. However, no significant differences in IT scores were
observed in resistant, moderate, and susceptible accessions
between years. The majority of the wheat accessions in the AM
panel displayed susceptible IT scores for all pathotypes except 12-
5 (29R45). For pathotypes 12-5 (29R45), 77-5 (121R63-1), 77-9
(121R60-1) and 104-2 (21R55), resistant ITs were observed in 42%,
9%, 13% and 9% of the accessions, respectively (Supplementary
Table S3). Pathotype 77-5 (121R63-1) was the most virulent,
followed by 77-9 (121R60-1) and 104-2 (21R55) pathotypes on
84%, 74%, and 71% of susceptible accessions, respectively, while
pathotype 12-5 (29R45) was avirulent on 35% of susceptible
accessions. Only 27 accessions (6.75%) showed resistance to all
pathotypes, consisting of advanced breeding lines (17), landraces

Fig. 1 Frequency histogram plot showing the distribution of phenotypic data of 400 wheat genotypes to each pathotype of leaf rust (i.e.,
12-5, 77-5, 77-9, and 104-2) used in the evaluation. The x-axis is the linearized disease scale, and the y-axis is the number of wheat
genotypes of the four pathotypes.

Fig. 2 Correlation heatmap and Pearson correlation coefficient among environments and pathotypes. a At seedling stageand b at adult
plant stage.
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(6), and cultivars (4) (Supplementary Table S4). Among the
pathotypes, correlation coefficients ranged from low to medium.
The adult plant response of the AM panel under field conditions

for four seasons (Summer_E1, Winter_E1, Summer_E2 and
Winter_E2) was evaluated in terms of disease severity (DS),
infection response (IR), and coefficient of infection (COI). However,
coefficient of infection (COI) values, which are the product of DS
and IR, were used for GWAS analyses. In contrast to SRT,
approximately 75% of the accessions displayed resistance reac-
tions in all four environments. The COIs of 77%, 74%, 76% and
73% of the accessions showed resistance reactions to leaf rust in
the S_E1, W_E1, S_E2, and W_E2 environments, respectively.
Moderate and susceptible reactions were observed in 22 to 25%
and 0.5 to 1% accessions, respectively. The presence of APR genes
in the background of the accessions provided resistance in the
adult plant stage compared to the seedling stage (Supplementary
Table S5). Twenty-six accessions (6.5%) showed resistance
reactions to leaf rust at both the seedling and adult plant stages,
comprising advanced breeding lines (17), landraces (5), and
cultivars (4) (Supplementary Table S4 and Table S9). A high
correlation (0.9) was observed among environments for the leaf
rust response (S_E1, W_E1, S_E2 and W_E2).

Population structure and LD decay
Four hundred (400) wheat accessions were genotyped for the AM
panel using a 35 K Axiom SNP array. After ensuring quality checks,
such as the removal of monomorphic and low-quality SNPs, a total
of 18,932 SNPs with their physical positions were used for GWAS
analyses. The physical positions of these SNPs were obtained
through BLAST search using wheat genome version IWGSC v2.0.
Out of 18,932 mapped SNPs, 6036 were mapped to the A sub-
genome, 7191 to the B sub-genome, and 5705 to the D sub-
genome. The number of SNPs mapped on individual chromo-
somes ranged from 377 (Chr4D) to 1307 (Chr2B) (Table 1). The
chromosomal level distribution of SNPs on three sub-genomes
showed (Supplementary Fig. S1) that the A sub-genome had the

highest number of SNPs on Chr2A (1072), followed by Chr1A
(1042) and Chr7A (984); the B sub-genome had the maximum
SNPs on Chr2B (1307), followed by Chr5B (1248) and Chr1B (1155),
whereas the D sub-genome had the maximum number of SNPs on
Chr2D (1168), followed by Chr1D (1028) and Chr5D (892).
However, to avoid homologous SNPs (which might be present
across the three wheat sub-genomes), only 18,932 SNPs with exact
physical locations were considered for further analysis.
Population structure analysis categorized the 400 accessions

into 4 different sub-populations, SP1, SP2, SP3 and SP4, based on
the ΔK method, consisting of 57, 16, 130, and 197 accessions,
respectively. Sub-population 4 (SP4) was the largest among the
four sub-populations with 49.2% of the total accessions from the
studied panel, followed by SP3, SP1, and SP2. Individuals of each
population could be further categorized into two groups, i.e.,
pure and admixture types. Populations comprising ≥ 0.8 of the
member proportions were considered pure and others were
considered admixtures. Considering this criterion, the composi-
tions of the four sub-populations were as follows (Supplementary
Fig. S3 A): SP1: 36% pure and 64% admixtures, SP2: 87% pure and
13% admixtures, SP3: 48% pure and 52% admixtures, and SP4:
11% pure and 89% admixtures. Out of the four sub-populations,
SP4 consisted of a higher proportion of resistant accessions than
the others. Principal component analysis (PCA) was also
performed, where PC1 explained 32.8% of the genetic variance,
while PC2 explained 13.0%. The PC analysis scatter plot
(Supplementary Fig. S3 B) showed that the first and second PCs
distinguished the four sub-populations of genotypes originating
from different regions, which also supported the results of the
population structure analysis.
A total of 18,932 markers selected for association analysis were

used to measure pairwise LD between markers. LD was measured
as the squared allele frequency correlation (R2) between pairs of
intra-chromosomal SNP’s with known chromosomal positions. The
LD (R2) across 21 wheat chromosomes ranged from 0.088 (Chr4D)
to 0.3-1 (Chr1D). The sub-genome LD level estimate for the A sub-

Table 1. Distribution of 18,932 SNPs in 21 chromosomes, their LD and other relevant information using 400 wheat genotypes under study.

Chromosome Size (Mb) No. of SNP Average number of
SNPs per MB

Chromosome (LD) No of marker pairs
in perfect LD

1A 594.1 1042 1.75 0.209 1810

1B 689.85 1155 1.67 0.299 3629

1D 495.45 1028 2.07 0.321 4324

2A 780.8 1072 1.37 0.187 1320

2B 801.26 1307 1.63 0.160 716

2D 651.85 1168 1.79 0.202 1608

3A 750.84 779 1.04 0.123 224

3B 830.83 1130 1.36 0.157 348

3D 615.55 682 1.11 0.105 111

4A 744.59 649 0.87 0.118 202

4B 673.62 543 0.81 0.109 196

4D 509.86 377 0.74 0.088 92

5A 709.77 818 1.15 0.125 285

5B 713.15 1248 1.75 0.185 1338

5D 566.08 892 1.58 0.151 706

6A 618.08 728 1.18 0.151 395

6B 720.99 965 1.34 0.147 271

6D 473.59 717 1.51 0.110 157

7A 736.71 948 1.29 0.130 356

7B 750.62 843 1.12 0.125 197

7D 638.69 841 1.32 0.104 171
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genome was 0.157, the B sub-genome was 0.154 and the D sub-
genome was 0.147. A detailed summary of markers, including
chromosome distribution, average LD score, and other associated
statistics is presented in Table 1. The background LD of 0.157 was
considered the threshold cut-off for estimating LD decay. It was
observed that in the selected wheat AM panel, LD decayed the
fastest in the A sub-genome followed by B and D. In the A sub-
genome, the R2 value for the marker pairs was 0.157 (used as the
threshold) at 1.9 Mb compared to 2.8 Mb in D and 4.1 Mb in the B
sub-genome (Supplementary Fig. S4).

Genome-wide association analysis
Identification of defence genes and genomic regions associated
with four different pathotypes at the seedling stage and
coefficient of infection at the adult plant resistance stage were
performed using various models. In using six different ML-GWAS
models, a total of 201 QTNs were identified for resistance to 4
different leaf rust pathotypes at the seedling stage (Supplemen-
tary Table S6 and Fig. 3 a–c), and 65 QTNs for APR were distributed
on 21 chromosomes (Supplementary Table S6). The phenotypic
variation (PVE) estimated (R2) for both seedling and APR ranged
from 1.98% to 31.72%, indicating that leaf rust pathotypes are
controlled by multiple loci with small to moderate effects. This
also shows the complex genetic control of these pathotypes at an
early stage of crop growth. Among the six ML-GWAS models used
in our analysis, the pLARmEB model was the most powerful, which
revealed the maximum number of associations QTNs (55), whereas
FASTmrEMMA was the least powerful, as it detected the lowest
number of QTNs (24). For the seedling stage, identified QTNs were

distributed on 19 wheat chromosomes, indicating good coverage
of the A, B, and D sub-genomes. The highest number of QTNs was
identified on chromosome 3D (35), followed by 5D (22), 3A (21), 3B
(18), 1D (11), and 6D (11). Out of 201 QTNs, 51 were resistant to 4
different pathotypes (i.e., 12-5, 77-5, 77-9, and 104-2) that were
repeatedly detected by at least two models are summarized in
Table 2 and Fig. 4. Furthermore, the pathotype-wise distributions
of these 51 reliable QTNs were 12-5 (13), 77-5 (14), 77-9 (13), and
104-2 (11). Furthermore, we compared the locations of identified
QTNs in our study with those of previous studies (Supplementary
Table S10).

QTNs for seedling
For pathotypes 12-5, a total of thirteen reliable QTNs were
identified in the association panel. (Table 2 and Fig. 5). Out of
these thirteen QTNs, QLr.iari-1AL_12-5, QLr.iari-1DS_12-5, QLr.iari-
3DL.2_12-5 and QLr.iari-5DL.2_12-5 were detected by at least two
models and explained 2.01% to 9.06% of the total phenotypic
variation. QLr.iari-3DL.1_12-5 represents the most significant QTN
for pathotypes 12-5, with the highest LOD score (9.45).
Similarly, fourteen reliable QTNs were significantly associated

with resistance to the 77-5 pathotype and were distributed on 10
chromosomes, including 1A, 1D, 3A, 3B, 3D, 5D, 6D, 7A, and 7D.
The highest number of QTNs was located on the D sub-genome.
Out of fourteen, six QTNs, QLr.iari-3AL.1_77-5, QLr.iari-3BL.2_77-5,
QLr.iari-3DS.2_77-5, QLr.iari-5DL_77-5, QLr.iari-6DL_77-5, and QLr.
iari-7AS_77-5, were identified consistently with the results of three
GWAS models and explained phenotypic variation in the range of
0.94–20.76%. Among these six QTNs, QLr.iari-3BL.2_77-5 was found

Fig. 3 Distribution of the QTNs (quantitative trait nucleotides) identified using six different multi-locus GWAS (genome-wide association
study) models. a Number of significant QTNs detected for both seedling and adult plant resistance across six multi-locus GWAS methods.
b Number of significant QTNs detected using each of six multi-locus GWAS methods. c Number of QTNs per chromosome.
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Table 2. Fifty-one LR seedling QTNs identified using two or more multi-locus GWAS models.

S.No QTN Pathotypes Marker Allele CHR Physical Position (bp) R2 (%) Method

1 QLr.iari-1AL_12-5 12-5 AX-94564902 G/A 1AL 560951545 4.24–5.50 2, 4, 5

2 QLr.iari -1BS_12-5 12-5 AX-94795575 A/G 1BS 11699838 6.05–8.92 1,2

3 QLr. iari -1DS_12-5 12-5 AX-94694366 T/C 1DS 11664706 2.01–4.33 1,4,6

4 QLr. iari -2BL_12-5 12-5 AX-94744507 C/T 2BL 794501018 4.80–10.81 2,6

5 QLr.iari -2DS_12-5 12-5 AX-94453702 G/C 2DS 1998328 4.78–6.17 1,2

6 QLr. iari -3DL.1_12-5 12-5 AX-95226287 C/T 3DL 607097529 7.46–9.39 1,6

7 QLr. iari -3DL.2_12-5 12-5 AX-95211729 A/G 3DL 608924291 3.44–9.06 2,3,4,5

8 QLr..iari -5DL.1_12-5 12-5 AX-95168536 A/G 5DL 545524679 3.97–5.60 1,2

9 QLr..iari -5DL.2_12-5 12-5 AX-95226435 T/C 5DL 560790484 2.59–6.33 1,4,5,6

10 QLr..iari -6BS_12-5 12-5 AX-94674559 T/G 6BS 301578848 0.88–0.97 4, 5

11 QLr..iari -6DS_12-5 12-5 AX-94931523 G/C 6DS 23076689 1.79–2.23 1,2

12 QLr..iari -7BL_12-5 12-5 AX-95123606 A/C 7BL 701212551 2.03–3.02 4,6

13 QLr.iari -7DS_12-5 12-5 AX-94447690 C/T 7DS 47016560 5.03–6.71 4, 6

14 QLr..iari -1AS_77-5 77-5 AX-94974317 T/C 1AS 20977920 4.30–5.06 1,4

15 QLr.iari -1DL_77-5 77-5 AX-94775918 T/C 1DL 412088785 0.98–1.76 2,6

16 QLr.iari -3AL.1_77-5 77-5 AX-94480950 T/C 3AL 633055312 0.97–2.36 1,2,4

17 QLr.iari -3AL.2_77-5 77-5 AX-94701636 C/T 3AL 749413006 6.62–10.32 5,6

18 QLr. iari -3BL.1_77-5. 77-5 AX-94499868 C/T 3Bl 803201073 2.14–3.45 1,4

19 QLr. iari -3BL.2_77-5. 77-5 AX-94883935 A/C 3BL 816277499 0.99–20.76 3,4,5,6

20 QLr..iari -3BL.3_77-5 77-5 AX-94671785 T/C 3BL 817016565 1.67–6.43 2,5

21 QLr.iari -3DL_77-5 77-5 AX-94972939 C/T 3DL 606949438 14.05–30.38 3,5

22 QLr.iari -3DS.1_77-5 77-5 AX-95100303 C/T 3DS 29690437 1.37–4.67 2,3

23 QLr..iari -3DS.2_77-5 77-5 AX-94414881 G/T 3DS 144780567 1.75–4.31 1,2,4

24 QLr.iari -5DL_77-5 77-5 AX-94847013 A/G 5DL 437528918 2.58–5.14 1,2,3,4,5

25 QLr.iari -6DL_77-5 77-5 AX-95101610 G/A 6DL 272647337 0.94–2.52 2,3,4

26 QLr. iari -7AS_77-5 77-5 AX-94671978 T/G 7AS 220400414 1.63–5.28 1,4,6

27 QLr.iari -7DS_77-5 77-5 AX-94833633 T/C 7DS 164201584 1.71–4.45 2,6

28 QLr. iari -1BS_77-9 77-9 AX-94393003 T/C 1BS 99755031 2.50–5.58 2,4

29 QLr. iari -1DS_77-9. 77-9 AX-94691001 G/T 1DS 110660531 4.15–9.48 1,3,4,5

30 QLr.iari -2AL.1_77-9 77-9 AX-94849863 G/T 2AL 709622777 2.08–2.78 2,4,5

31 QLr. iari -2AL.2_77-9 77-9 AX-94481508 T/C 2AL 728409839 1.99–5.91 1,2,3,4,5

32 QLr.iari -2BS_77-9 77-9 AX-94880760 A/C 2BS 72577514 4.36–4.53 3,6

33 QLr.iari -3AL_77-9 77-9 AX-94681641 C/G 3AL 739951129 11.25–13.72 1,2,5

34 QLr. iari -3BL_77-9 77-9 AX-95245050 C/T 3BL 804561298 10.30–31.72 1,2,4,5

35 QLr. iari -3DL.1_77-9 77-9 AX-95226287 C/T 3DL 607097529 4.42–6.14 3,4

36 QLr. iari -3DL.2_77-9 77-9 AX-95211729 A/G 3DL 608924291 3.83–11.70 4,6

37 QLr. iari -5DL_77-9. 77-9 AX-94943882 A/G 5DL 425717324 1.17–1.18 2,4,5

38 QLr.iari -6DL_77-9 77-9 AX-94623196 A/G 6DL 468095658 2.61–3.50 1,2,5

39 QLr. iari -7AL_77-9 77-9 AX-94831246 C/G 7AL 722304163 1.93–4.23 4,5

40 QLr. iari -7AS_77-9 77-9 AX-94492006 C/T 7AS 180661949 2.96–11.13 3,4

41 QLr.iari -1AL_104-2 104-2 AX-94777053 T/C 1AL 577474249 2.39–2.95 1,6

42 QLr. iari -3AL_104-2 104-2 AX-94480950 T/C 3AL 633055312 1.68–5.00 1,2,3,4

43 QLr. iari -3AS_104-2 104-2 AX-94712805 G/C 3AS 176558149 1.47–3.62 5,6

44 QLr.iari -3BL_104-2 104-2 AX-94642697 C/G 3BL 816523654 0.58–12.60 4,5

45 QLr. iari -3DL.1_104-2 104-2 AX-95226287 C/T 3DL 607097529 5.80–18.45 2,3,4,5,6

46 QLr. iari -3DL.2_104-2. 104-2 AX-95211729 A/G 3DL 608924291 6.74–11.64 1,2,6

47 QLr. iari -5AL_104-2 104-2 AX-94947385 G/C 5AL 551050275 6.81–7.29 1,2

48 QLr. iari -5DL_104-2 104-2 AX-95107192 C/A 5DL 550191244 2.20–4.26 1,2,3,4,5

49 QLr.iari -7AS_104-2 104-2 AX-94553654 G/A 7AS 347145913 1.28–1.74 4,5

50 QLr. iari -7BL_104-2 104-2 AX-94564853 A/G 7BL 673962683 6.54–7.69 5,6

51 QLr. iari -7BS_104-2 104-2 AX-94622619 T/C 7BS 24401102 1.33–4.12 4,6

1: mrMLM; 2: FASTmrMLM; 3: FASTmrEMMA; 4: pLARmEB; 5: ISIS EM-BLASSO; 6: PkwmEB; CHR: Chromosome; R2: Phenotypic variation.
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to be common with the results of four GWAS models (i.e.,
FastMrEMMA, pLARmEB, ISIS EM-BLASSO and pkWmEB), and
another QTN QLr.iari-5DL_77-5 was detected through five different
GWAS models (i.e., MrMLM, FastMrMLM, FastMrEmma, pLARmEB
and ISISEM-BLASSO), which were major QTNs, and the other four
were minor. Similarly, the QTN on chromosome 3B (QLr.iari-
3BL.2_77-5) was a major QTL (R2 > 10% for at least one method)
and also explained the highest phenotypic variance with an LOD
value of 3.07–24.27.
For resistance to pathotype 77-9, thirteen reliable QTNs were

identified. Of these, 7 QTNs, viz., QLr.iari-1DS_77-9, QLr.iari-
2AL.1_77-9, QLr.iari-2AL.2_77-9, QLr.iari-3AL_77-9, QLr.iari-3BL_77-
9, QLr.iari-5DL_77-9 and QLr.iari-6DL_77-9, were identified using
three different models and distributed on chromosomes 1D, 2A,
3A, 3B, 5D and 6D, respectively. All seven reliable QTNs were major
and explained 1.75–31.72% of the phenotypic variation for 77-9.
Out of seven, QLr.iari-2AL.2_77-9 was detected through five
different models (i.e., MrMLM, FastMrMLM, FastMrEMMA, pLAR-
mEB, and ISIS-EM-BLASSO) and explained 1.99-5.91% of the total
phenotypic variance.
Eleven QTNs were significantly associated with resistance to the

104-2 pathotype and were on different chromosomal regions, i.e.,
1A, 3A, 3B, 3D, 5A, 5D, 7A and 7B and, which explained phenotypic
variation in the range of 0.58–18.45%. Furthermore, QLr.iari-
3DL.1_104-2 (FastMrMLM, FastMrEMMA, pLARmEB, ISIS EM-
BLASSO and pkWmEB) and QLr.iari-5DL_104-2 (MrMLM,
FastMrMLM, FastMrEMMA, pLARmEB, ISIS EM-BLASSO and
pkWmEB) QTNs were major and detected by five models and
represent a highly reliable locus for resistance to the 104-2
pathotype (Supplementary Fig. S6). Among these two QTNs, QLr.
iari-3DL.1_104-2 had profound control of seedling stage resistance
to the 104-2 pathotype (R2= 5.80–18.45%, LOD: 4.13–13.90).

QTNs for adult plant resistance
Out of 65 QTNs identified for APR, 15 QTNs were consistently
detected by at least two GWAS models, and the results are
presented in Supplementary Table S7. These identified QTNs were
distributed over eleven different chromosomal regions (i.e., 1A, 1B,
1D, 2A, 2B, 3A, 3B, 3D, 4A, 4D and 6D) and explained 1.30% to
17.83% of the phenotypic variation. Of these, seven QTNs, QLr.iari-
1DL_APR, QLr.iari-2AL_APR, QLr.iari-3AL.2_APR, QLr.iari-3AL.4_APR,
QLr.iari-3DL_APR, QLr.iari-4AL.1_APR and QLr.iari-6DL_APR, were
found to be highly consistent in four or more GWAS models. Of
the seven QTNs, four were major and found to be consistent using
five different models (i.e., MrMLM, FastMrMLM, FastMrEMMA,
pLARmEB, ISIS EM-BLASSO) and explained a range of phenotypic
variance (1.32–20.76%) with LOD values (3.07–7.96). Most QTNs
identified were found on the long arm of chromosome 3A and
explained 2.64% to 7.60% of the phenotypic variance.

Pleiotropic QTNs associated with multiple pathotypes
Responses to different leaf rust pathotypes are generally
correlated, and complex biological mechanisms are involved in
the coordination of their expression. The pleiotropic action of
genetic loci on different pathotypes or their fixed linkage results in
a correlation between pathotypes. A total of three QTNs were
found to pleiotropically affect the response to different patho-
types (Table 2). A locus on the long arm of 3D (AX-95226287 and
AX-95211729) was associated with two different pathotypes (12-5
and 77-9), and another locus on the long arm of 3A (AX-94480950)
was associated with 77-5 and 104-2. We also identified one locus
on the long arm of chromosome 3A (genomic region < 10 Mb in
size) that contained QTNs for both seedling and adult plant
resistance (Table 2 and Supplementary Table S7). For example, the
genomic region (739.38–739.55 Mb) on 3AL was associated with
two QTNs, QLr.iari-3AL_77-9 for seedling resistance and QLr.iari-
3AL.4_APR for adult plant resistance. On chromosome 1AL, two
QTNs (QLr.iari-1AL_12-5 and QLr.iari-1AL_APR) for both seedling

and adult plant resistance were located within 560.96 and
568.00 Mb regions, respectively. Another genomic region
(606.94–608.92 Mb) on 3DL (3 QTNs) was associated with
pathotypes 12-5 and 77-5. Similarly, two QTNs, one each for 12-
5 (QLr.iari-5DL.1_12-5) and 104-2 (QLr.iari-5DL_104-2), were found
within a small genomic region (545.52–550.19 Mb) on 5DL. These
identified loci influencing several pathotypes could be potential
markers for future marker-assisted breeding (MAS) programs after
validation. For a better understanding of the results, chromosome-
wise distributions of significant QTNs have also been presented as
Manhattan plots (Fig. 5).

Identification of potential candidate genes
Putative candidate genes associated with seedling resistance to
pathotypes 12-5, 77-9 and 104-2 belonged to the serine-threonine/
tyrosine-protein kinase family, which has a robust role in pathogen
recognition and disease resistance (Bhatia et al. 2021; Pradhan
et al. 2020; Afzal et al. 2008) (Table 3 and Supplementary Table S8).
Similarly, putative candidate genes linked to the markers
associated with the response to pathotype 77-5 belonged to the
leucine-rich repeat domain superfamily that contributes to
pathogen effector recognition (Kumar et al. 2021; Marone et al.
2013; Feuillet et al. 1997). Similarly, 19 drought-induced protein
types, zinc-binding domain proteins that are involved in plant
disease resistance (Gupta et al. 2012), and regulators of chromo-
some condensation 1/beta-lactamase-inhibitor protein II, were also
functionally annotated for markers associated with the response to
pathotype 12-5 (Narayanan et al. 2009). Modulation of defence
responses against pathogens was also involved in replication
machinery involving DEAD-box ATP-dependent RNA helicase 58,
chloroplastic (Li et al. 2008), and a versatile F-box-like domain
superfamily protein, master regulator for protein degradation and
broadly targeted by miRNAs (Li et al. 2020). Similarly, markers
associated with pathotype 77-5 and 77-9 trigger a response against
the host by hydrolysis using P-loop-containing nucleoside tripho-
sphate hydrolase (Juliana et al. 2018; Wu et al. 2019) and the
tetratricopeptide-like helical domain superfamily. A possible role
against seedling resistance was also provided by Isopenicillin N
synthase-like, oxoglutarate/iron-dependent dioxygenase and
domain of unknown function DUF1618 (Pradhan et al. 2020;
Naoumkina et al. 2010; Riaz et al. 2018). Notably, a few more genes,
including an amino acid transporter, transmembrane domain, C2
domain superfamily, flavin-containing monooxygenase, aspartoki-
nase, and ubiquitin-specific protease domain, were also identified
as potential candidates against diverse sets of pathotypes against
leaf rust (Sonawala et al. 2018; Zhang et al. 2013; Serba et al. 2015;
Cloutier et al. 2008; Nazeem et al. 2011; Zanke et al; 2017; Pariyar
et al. 2016).
Gene annotation for adult plant resistance against leaf rust

pathogens covers the most similar plethora of proteins involved in
seedling resistance because both shared homology with the
signalizing cascade and elicitor response. However, a few
additional annotated proteins, including histone acetyltransferase
Rtt109/CBP (Saripalli et al. 2020; Sharma et al. 2019),
S-formylglutathione hydrolase (Saintenac et al. 2013), NADH-
ubiquinone oxidoreductase, 20 Kd subunit (Jain et al. 2021; Song
et al. 2011) and a few additional proteins involving AT-hook motif
nuclear-localized proteins, alpha/beta hydrolase fold, superoxide
dismutase (Cu/Zn)/superoxide dismutase copper chaperone, and
subtilisin-like protease SBT1.3 (Jain et al. 2021; Saripalli et al. 2020;
Singh et al. 2017; Juliana et al. 2018), have already been screened
against leaf rust pathotypes.

DISCUSSION
Wheat germplasm collections are a repository for novel resources
of genes, alleles and QTNs against various pathogens because
they were collected from widely distributed geographical
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environments/locations. Although a diverse set of leaf rust
resistance genes have been mapped and utilized, pathogens
evolve corresponding avr factors against the resistance genes,
resulting in the breakdown of resistance. Such a situation

demands the identification, diversification, and utilization of new
resistance genes to provide durable resistance. Among the gene
pools available for the exploitation of genetic resistance, the
primary gene pool comprising landraces, breeding lines, cultivars,

Fig. 4 Physical map for seedling and adult plants resistant to leaf rust. Different colors indicate different pathotypes, i.e., blue:77-5,
green:77-9, red:104-2, purple:12-5 and pink: adult plant resistant (APR).
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etc., constitutes a vital source for novel resistance genes, as they
can be immediately used in the development of cultivars (Mujeeb-
Kazi et al. 2013). Moreover, advances in high-throughput
genotyping, phenotyping, next-generation sequencing, bioinfor-
matics tools, etc., have paved the way to access valuable
information from genomic databases and to study a large number
of germplasms, enabling effective harnessing of the genetic
diversity of the germplasm. The association mapping panel of 400

diverse genotypes, comprising advance breeding lines, landraces,
and cultivars characterized in the study, showed significant
variations in leaf rust resistance on both seedlings in the
greenhouse and adult plants in the field. As the panel was
subjected to predominant and virulent leaf rust pathotypes at
seedling and adult plant stages, we were able to identify
significant resistance QTNs, which can be utilized to broaden
the genetic base of leaf rust resistance.

Fig. 5 Manhattan plot (showing significant marker-trait associations) for infection type (IT) at seedling stage and coefficient of infection
(COI) at adult plant stage to leaf rust. a For pathotype 12-5, b for pathotype 77-5, c for pathotype 77-9, d for pathotype 104-2, and e for adult
plant stage.
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Phenotypic variation for leaf rust resistance
Screening of the association mapping panel for leaf rust
resistance was performed at the seedling stage under controlled

conditions and at the adult plant stage under field conditions.
The panel displayed wide variation in the leaf rust response in
both seedling and adult plant stages. Phenotypic data of leaf

Table 3. Candidate genes around the reliable QTNs and their functional annotation for seedling stage.

Pathotypes Marker CHR TRANSCRIPT Position (bp) Descriptions

12-5 AX-94564902 1AL TraesCS1A02G395200.1 560,946,979–560,952,119 Drought induced 19 protein type, zinc-
binding domain

12-5 AX-94795575 1BS TraesCS1B02G024400.1 11,695,669–11,702,119 Regulator of chromosome condensation 1/beta-
lactamase-inhibitor protein II

12-5 AX-94694366 1DS TraesCS1D02G030000.1 11,664,577–11,668,738 Adaptor protein Cbl, N-terminal domain superfamily

12-5 AX-94744507 2BL TraesCS2B02G618500.1 794,500,736–794,504,405 Zinc finger, GATA-type

12-5 AX-95211729 3DL TraesCS3D02G533100.1 608,924,067–608,931,731 Serine-threonine/tyrosine-protein kinase,
catalytic domain

12-5 AX-95226287 3DL TraesCS3D02G530600.2 607,094,510–607,098,157 DEAD-box ATP-dependent RNA helicase 58,
chloroplastic

12-5 AX-95168536 5DL TraesCS5D02G528700.1 545,523,515–545,526,025 F-box-like domain superfamily

12-5 AX-95226435 5DL TraesCS5D02G559300.1 560,789,894–560,792,041 Cytochrome P450 superfamily

12-5 AX-94931523 6DS TraesCS6D02G048300.2 23,075,148–23,077,733 Catalase, mono-functional, haem-containing

77-5 AX-94480950 3AL TraesCS3A02G383600.2 633,052,725–633,055,395 Probable magnesium transporter

77-5 AX-94701636 3AL TraesCS3A02G538300.1 749,408,319–749,414,725 Leucine-rich repeat domain superfamily

77-5 AX-94499868 3BL TraesCS3B02G572200.1 803,198,582–803,201,434 rRNA N-glycosidase

77-5 AX-94671785 3BL TraesCS3B02G593500.2 817,174,846–817,186,826 P-loop containing nucleoside triphosphate
hydrolase

77-5 AX-94883935 3BL TraesCS3B02G592000.1 816,276,316–816,278,437 Isopenicillin N synthase-like

77-5 AX-94972939 3DL TraesCS3D02G529900.2 606,948,752–606,950,236 Oxoglutarate/iron-dependent dioxygenase

77-5 AX-94414881 3DS TraesCS3D02G169100.1 144,779,767–144,782,297 Domain of unknown function DUF1618

77-5 AX-95100303 3DS TraesCS3D02G066900.1 29,689,549–29,702,772 Threonyl/alanyl tRNA synthetase, class II-like,
putative editing domain superfamily

77-5 AX-94847013 5DL TraesCS5D02G356400.1 437,528,626–437,530,793 Leucine-rich repeat domain superfamily

77-5 AX-95101610 6DL TraesCS6D02G196400.1 272,645,711–272,648,516 Tetratricopeptide-like helical domain superfamily

77-5 AX-94833633 7DS TraesCS7D02G206700.2 164,179,874–164,205,637 P-loop containing nucleoside triphosphate
hydrolase

77-9 AX-94393003 1BS TraesCS1B02G095900.1 99,751,699–99,755,558 Amino acid transporter, transmembrane domain

77-9 AX-94691001 1DS TraesCS1D02G114700.2 110,659,526–110,662,416 PLC-like phosphodiesterase, TIM beta/alpha-barrel
domain superfamily

77-9 AX-94481508 2AL TraesCS2A02G497700.1 728,405,886–728,410,445 Inositol-pentakisphosphate 2-kinase

77-9 AX-94880760 2BS TraesCS2B02G110500.1 72,570,247–72,580,245 Serine/threonine-protein kinase TIO

X77-9 AX-94681641 3AL TraesCS3A02G525400.1 739,557,732–739,560,684 Tetratricopeptide-like helical domain superfamily

77-9 AX-95211729 3DL TraesCS3D02G533100.1 608,924,067–608,931,731 Serine-threonine/tyrosine-protein kinase,
catalytic domain

77-9 AX-95226287 3DL TraesCS3D02G530600.2 607,094,510–607,098,157 DEAD-box ATP-dependent RNA helicase 58,
chloroplastic

77-9 AX-94943882 5DL TraesCS5D02G336100.1 425,652,239–425,654,135 C2 domain superfamily

77-9 AX-94623196 6DL TraesCS6D02G395600.1 468,095,605–468,100,014 Serine-threonine/tyrosine-protein kinase,
catalytic domain

77-9 AX-94492006 7AS TraesCS7A02G215200.1 180,650,193–180,663,921 Sister chromatid cohesion protein Pds5

104-2 AX-94777053 1AL TraesCS1A02G421000.1 577,468,378–577,474,524 Protein kinase-like domain superfamily

104-2 AX-94480950 3AL TraesCS3A02G383600.2 633,052,725–633,055,395 Probable magnesium transporter

104-2 AX-95211729 3DL TraesCS3D02G533100.1 608,924,067–608,931,731 Serine-threonine/tyrosine-protein kinase,
catalytic domain

104-2 AX-95226287 3DL TraesCS3D02G530600.2 607,094,510–607,098,157 DEAD-box ATP-dependent RNA helicase 58,
chloroplastic

104-2 AX-94947385 5AL TraesCS5A02G348200.1 551,047,743–551,050,672 Flavin-containing monooxygenase

104-2 AX-95107192 5DL TraesCS5D02G537600.1 550,184,040–550,191,990 Aspartokinase/Bifunctional aspartokinase/
homoserine dehydrogenase, catalytic domain

104-2 AX-94564853 7BL TraesCS7B02G405400.2 673,955,432–673,963,147 Ubiquitin specific protease domain

104-2 AX-94622619 7BS TraesCS7B02G025700.1 24,400,331–24,409,900 Zinc finger, RING/FYVE/PHD-type
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rust reactions did not follow a normal distribution, but were
skewed towards susceptibility in seedlings and towards resis-
tance in adult plant stages. The seedling resistance test of the
AM panel showed that more than 70% of the accessions were
susceptible to three pathotypes (77-5(121R63-1=THTTM), 77-9
(121R60-1=MHTKL) and 104-2 (21R55= PHTTL)), while more
than 70% of the accessions exhibited resistance reactions in the
adult plant stage. The same susceptible checks used in the field
and seedling tests exhibited susceptible reactions across
environments and years, which indicates that variation in leaf
rust reactions among the accessions in the seedling and adult
stages is genetic.
The majority of the resistant accessions (except a few) in the

field displayed susceptible reactions in the seedling stage,
including advance breeding lines (140), landraces (127), and
cultivars (16). A higher number of resistant accessions in the
adult plant stage across environments coupled with suscep-
tible reactions in the seedling stage indicated the presence of
APR QTLs in the panel. Moreover, 26 accessions were resistant
at both the seedling and adult plant stages, which may be due
to the presence of the major R gene in the background. In
recent years, the emphasis on APR genes for rust resistance in
wheat improvement programs has been attributed to the
presence of APR genes in advance breeding lines and cultivars,
but the presence of APR in landraces is interesting. APR QTLs
among landraces may be known or novel, which can diversify
leaf rust resistance. Previous studies by Aoun et al. (2016);
Sapkota et al. (2019b); Kumar et al. (2020a) and Joukhadar et al.
(2020) utilized landraces for harnessing novel leaf rust
resistance alleles.

Population structure and linkage disequilibrium
We considered 18,932 SNPs on different chromosomes and
observed that sub-genome B had the highest marker density,
followed by sub-genomes A and D. A similar pattern in which sub-
genome B had the highest marker density among the sub-
genomes was also observed previously (Kumar et al. 2020a). The
rate of LD decay was faster in genome A than in genomes B and D,
which was in concurrence with other studies (Chao et al. 2010;
Voss‐Fels et al. 2015; Pradhan et al. 2020).
For any breeding program, genetic diversity is the key factor,

therefore, determination of the extent of genetic diversity and
population structure are the foremost requirements for utilizing
plant genetic resources in breeding programs and genetic
studies (Atwell et al. 2010). The AM panel comprised genotypes
from diverse geographic regions, of 400 genotypes: 258 were
from the northern part of India (Punjab, Haryana, Uttar Pradesh,
Uttarakhand, and Himachal Pradesh), 67 were from other parts of
India, such as the Central zone (Rajasthan, Madhya Pradesh and
Gujarat) and the southern part of India (Karnataka, Tamilnadu
and Andhra Pradesh), 59 were from CIMMYT, Mexico, and 16
other genotypes were exotic. Among the indigenous germ-
plasms, 50% of the accessions were landraces or indigenously
collected germplasm lines. Different analysis methods (model-
based population structure, principal component and cluster
analyses) agreed with a common consensus and indicated the
presence of four sub-groups (K= 4) that also broadly agree with
the geographic origins of the genotypes (Kumar et al. 2020a).
Significant admixture was noticed, which might be due to the
sharing of the germplasm across breeding programs. We
observed that 70% of SP1 included germplasm of Indian origin
and were either landraces or breeding lines or released cultivars.
Out of 130 genotypes from SP3, 76 accessions were indigenous
landraces, while the rest of the accessions were cultivars (23) and
breeding lines (31). SP2 contained only 16 accessions, of which
eight each were landraces and breeding lines. SP4 had 80%
landraces/indigenously collected germplasm of Indian origin and
20% cultivar and breeding lines.

Comparison of identified QTNs with previously published Lr
genes/QTNs
Genome-wide association studies are a powerful approach in
plants to detect QTNs associated with multiple pathotypes.
Genome-wide association studies have been successfully used in
association panels to detect several genomic loci/regions
conferring resistance to leaf rust at seedling and adult plant
growth stages (Kertho et al. 2015; Aoun et al. 2016; Turner et al.
2017; Riaz et al. 2018). Our study detected a total of 51 reliable
QTNs for seedling resistance to leaf rust. These QTNs were
distributed mostly all over the wheat chromosomes except for a
few chromosomes, such as Chr4A, Chr4B, Chr4D, Chr5B, and
Chr6A, for the four different pathotypes. These QTNs further need
to be validated before use in any future breeding programs.
Previous studies have also identified Lr genes/QTNs distributed
on almost all wheat chromosomes, as both major and minor
genes are known to be responsible for conferring leaf rust
resistance at both seedling and adult plant stages (Sapkota et al.
2019b). Furthermore, we compared the locations of identified
QTNs in this study with those of previous studies. For some of the
QTNs, comparisons across different studies were difficult due to
the differences in the marker platforms, mapping populations,
and the lack of a consensus map to compare positions. For such
QTNs, only chromosome arm positions (short/long) were used for
comparison in our analysis. Novel associations for leaf rust
resistance identified in the current study along with previously
reported ones are discussed below.
Of the 51 QTNs detected at the seedling stage through ML-

GWAS, QLr.iari-1AL_12-5 and QLr.iari-1AL_104-2 were found to be
significant for resistance to the 12-5 and 104-2 pathotypes,
respectively, which were located on the long arm of 1A at 560.95
to 577.47 Mb chromosomal region, which is near the IWA1557
marker (Turner et al. 2017) and QLr.ags-1AL QTL (Sapkota et al.
2019a). Two QTNs, QLr.iari-1DS_12-5 and QLr.iari-1DS_77-9, asso-
ciated with the 12-5 and 77-9 pathotypes located on chromosome
1DS are near the TSD276-2 gene (Dinkar et al. 2020). The other two
QTNs, QLr.iari-2AL.1_77-9 and QLr.iari-2AL.2_77-9, were associated
with the 77-9 pathotype and located at 709.62 and 728.40 Mb,
respectively, on the long arm of chromosome 2A were present
near the IWA5092 marker (Turner et al. 2017).
QTN, QLr.iari-2BL_12-5 detected on chromosome 2BL and

associated with the 12-5 pathotype are in the vicinity of the
IWA2025, IWA207 and IWA2509 markers (Turner et al. 2017).
Similarly, QLr.iari-2BS_77-9 QTN was found at 725.77 Mb on the
short arm of chromosome 2B, which is near the IWA4894 marker
(Turner et al. 2017). Seven known Lr genes and two QTLs, viz., Lr13
(Dyck et al. 1966), Lr16 (McCartney et al. 2005), Lr23 (McIntosh and
Dyck 1975), Lr48 (Bansal et al. 2008), Lr73 (Park et al. 2014), LrZH22
(Wang et al. 2016b), LrA2K (Sapkota et al. 2019a), Q.Lr.cimmyt-2BS
(Rosewarne et al. 2012), and QLr.hebau-2BS (Zhang et al. 2017b),
were also identified and located on the short arm of chromosome
2B in the vicinity of QTN, QLr.iari-2BS_77-9. Of these seven known
genes, Lr13 and Lr48 are APR genes reported in the wheat cultivars
Frontana and CSP44, respectively (Dyck et al. 1966; Bansal et al.
2008). The leaf rust resistance genes Lr13 and Lr23 have been used
extensively in breeding programs in India, and most of the older
cultivars and breeding lines carry these genes; presently, these
genes are not effective. Moreover, the leaf rust resistance genes,
Lr16 and Lr48 are not effective against all four pathotypes, and the
reaction of these pathotypes to Lr73 is unknown. One QTN, Q.Lr.
iari-2DS_12-5, detected on chromosome 2DS and associated with
the 12-5 pathotype was found to be closely associated with the
QLr.ags-2DS QTL (Sapkota et al. 2019a). Interestingly, QTN, Q.Lr.iari-
3AL.1_77-5, was identified at 633.05 Mb on the long arm of
chromosome 3A and was consistently associated with two
pathotypes, i.e., 77-5 and 104-2, which is near the QYr.hebau-
3AL/QLr.hebau-3AL QTL associated with multiple rust resistance
(Gebrewahid et al. 2020).
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Five QTNs, QLr.iari-3BL.1_77-5, QLr.iari-3BL.2_77-5, QLr.iari-
3BL.3_77-5, QLr.iari-3BL_77-9 and QLr.iari-3BL_104-2, were found
on the long arm of chromosome 3B located at 803.20-817.01 Mb,
which is close to the QLr.hzau-3BL QTL (Zhou et al. 2021) and
markers, IWA6633,IWA7889 and IWA4312 (Turner et al. 2017). For
pathotype 77-5, QLr.iari-1AS_77-5 on the short arm of chromo-
some 1A was close to Lr10 (Choudhuri 1958), QLr.iari-1DL_77-5 was
close to Lr21 (Rowland and Kerber 1974), and Lr38 (Friebe et al.
1993) was located on the long arm of chromosome 1D.
Pathotypes, 77-5 and 77-9 are virulent on the leaf rust resistance
genes, Lr10, Lr21 and Lr38. Seven other QTNs, i.e., QLr.iari-
3DL.1_12-5, QLr.iari-3DL.2_12-5, QLr.iari-3DL_77-5, QLr.iari-
3DL.1_77-9, QLr.iari-3DL.2_77-9, QLr.iari-3DL.1_104-2 and QLr.iari-
3DL.2_104-2 were found on chromosome 3DL, which was close to
the gene, Lr24 (Mclntosh et al. 1976). The leaf rust resistance gene,
Lr24 has been providing resistance to leaf rust for more than two
decades in India, so the presence of Lr24 is obvious in cultivars
and advance breeding lines. Out of 7 QTNs, QLr.iari-3DL.1_12-5
and QLr.iari-3DL.1_77-9 were associated with marker AX-95226287
for two pathotypes, i.e., 12-5, 77-9. Similarly, QLr.iari-3DL.2_12-5
and QLr.iari-3DL.2_77-9 were consistent with the 12-5 and 77-9
pathotypes associated with the AX-95211729 marker. Two QTNs,
QLr.iari-3DS.1_77-5 and QLr.iari-3DS.2_77-5, identified in pathotype
77-5 were located on chromosome 3DS near the genes, Lr32
(Kerber, 1987) and Lr38 (Friebe et al. 1993). On chromosome 6DL,
QLr.iari-6DL_77-9 and QLr.iari-6DL_77-5 QTNs were close to Lr38
(Friebe et al. 1993). Pathotypes 77-5 and 77-9 are avirulent on Lr32
and virulent on Lr38. Similarly, ten QTNs were also detected closer
to loci reported in previous studies, which were distributed on
chromosomes 6BS (QLr.usw-6BS: Kthiri et al. 2019), 6DS (IWA2476:
Turner et al. 2017), 7AL (IWA4175: Turner et al. 2017), 7AS
(IWA1277: Turner et al. 2017), 7BL (QLr.usw-7BL: Kthiri et al. 2019)
and 7DS (KaspLr34: Turner et al. 2017).
Furthermore, fifteen QTNs were consistently identified at the

adult plant stage to LR in two or more models and were distributed
on Chr1A, Chr1B, Chr1D, Chr2A, Chr2B, Chr3A, Chr3B, Chr3D, Chr4A,
Chr4D and Chr6D, with phenotypic variation ranging between 1.30-
17.83%. Out of 15 QTNs, one QTN QLr.iari-1AL_APR detected on
chromosome 1AL is close to the QLr.ags-1AL QTL (Sapkota et al.
2019a) and the IWA1557 marker (Turner et al. 2017). Similarly, QTN
QLr.iari-1BL_APR found on the long arm of chromosome 1B is close
to QLr.hebau-1BL (Xu et al. 2021) and QLr.sun-1BL (Kandiah et al.
2020) QTLs. Another QTN, QLr.iari-2BL_APR, located at 596.41Mb on
chromosome 2BL is close to QLr.sun-2BL (Kandiah et al. 2020) and
(IWA2025, IWA207, IWA2509: Turner et al. 2017). Interestingly, one
chromosomal region, i.e., 3BL was associated with four QTNs: QLr.
iari-3AL.1_APR, QLr.iari-3AL.2_APR, QLr.iari-3AL.3_APR and QLr.iari-
3AL.4_APR are near QYr.hebau-3AL/QLr.hebau-3AL (Gebrewahid et al.
2020). Similarly, two QTNs were found near those reported in
previous studies, which are distributed on chromosomes 3BL
(IWA6633, IWA7889, IWA4312: Turner et al. 2017) and 4AL (QLr.
hebau-4AL: Zhang et al. 2017b). Of these 15 QTNs, five were novel
QTNs, i.e., 1DL: QLr.iari-1DL_APR, 2AL: QLr.iari-2AL_APR, 3DL: QLr.iari-
3DL_APR, 4DL: QLr.iari-4DL_APR and 6DL, QLr.iari-6DL_APR, which
were not reported in previous studies.
The identification and utilization of novel genes/QTNs for

resistance is a continuous process and a regular challenge that is
critical in plant breeding to cope with the threats to crop
production caused by diseases. Genome-wide association studies
are a powerful approach to detect QTNs associated with
resistance. In this study, the significance of six ML-GWAS models
on a panel of various wheat genotypes provided comprehensive
insight into the molecular genetic basis of leaf rust resistance in
wheat. A total of 51 reliable QTNs for seedling and 15 QTNs for
APR were detected by two or more models. Of these QTNs, 8
QTNs showed a significant effect on the corresponding leaf rust
pathotypes. The results of the current study showed the value of
our diverse genetic resources conserved in the Indian National

Gene bank. Although many QTNs were identified in the known
region, the presence of novel QTN regions (i.e., 1BS, 3AS, 5AL, 5DL
and 7BS) for four pathotypes at the seedling stage and (1DL, 2AL,
3DL, 4DL and 6DL) for the adult plant stage could enhance our
understanding and provide new resources for leaf rust resistance
in wheat. Furthermore, the novel genomic regions identified in
the present study must be examined for favorable alleles
associated with resistance genes so that they can be used in
breeding programs.
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