See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/358359115

Global interdependence for fruit genetic resources: status and challenges in India

Article *in* Food Security · February 2022 Dol: 10.1007/s12571-021-01249-6

TION		READS 501	
autho	ors, including:		
	Pratibha Brahmi		Vandana Tyagi
ë,	National Bureau of Plant Genetic Resources	100	Indian Council of Agricultural Research
	36 PUBLICATIONS 231 CITATIONS		46 PUBLICATIONS 226 CITATIONS
	SEE PROFILE		SEE PROFILE
-	Vartika Srivastava		Satish Kumar Yadav
	Institute of Agricultural Sciences		Indian Council of Agricultural Research
	15 PUBLICATIONS 36 CITATIONS		45 PUBLICATIONS 278 CITATIONS
	SEE PROFILE		SEE PROFILE

Some of the authors of this publication are also working on these related projects:

 Project
 Breeding Basmatic Rice View project

 Project
 Indian council of Agricultural Research Grant No. 10(9)2011-EPD View project

REVIEW

Global interdependence for fruit genetic resources: status and challenges in India

Pragya Ranjan¹ · Pratibha Brahmi¹ · Vandana Tyagi¹ · J. K. Ranjan² · Vartika Srivastava¹ · S. K. Yadav¹ · S. P. Singh¹ · Surender Singh¹ · P. C. Binda¹ · S. K. Singh² · Kuldeep Singh¹

Received: 13 October 2020 / Accepted: 15 December 2021 © International Society for Plant Pathology and Springer Nature B.V. 2022

Abstract

Sharing and exchange of germplasm within and beyond national boundaries generates opportunities to enrich the plant wealth of a country. India is the second largest producer of fruits and vegetables in the world. An analysis of the status of inflow and outflow of fruit germplasm in India was carried out to determine the extent of Indian national interdependence. The goal of this article is to promote the use of fruit genetic resources in crop improvement programmes. Our objectives are (i) to trace the history of domestication or introduction of important fruit crops in India and their subsequent adoption/ diffusion; (ii) to review the usage of exotic germplasm in India as well as Indian germplasm around the world; (iii) to discuss the important agreements/ actions to regulate international exchange of germplasm; (iv) to describe and analyse constraints in global exchange of germplasm; (v) to discuss the ways to strengthen international exchange and enhance utilisation of fruit germplasm. Methods used included retrieval of databases, literature review, communication with key informants, and crop pedigree analysis. India has been exchanging foreign germplasm since time immemorial but till late eighties, the germplasm flow was largely unregulated. Since the early nineties, a mechanism for import was in place. However, formal exchange was initiated in 1976 with the establishment of the Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR). Till date, ICAR-NBPGR has imported 9,684 accessions of fruit crops from over 40 countries. Using exotic germplasm, India has formally released over 100 varieties of fruit crops. Indian germplasm has also been utilised in international breeding of new cultivars or rootstocks, particularly in mango, citrus and banana. The development of Floridian mangoes in the USA, the use of Indian citrus rootstocks worldwide, and the use of Indian banana genotypes are classical examples of the international utilisation of Indian fruit germplasm. The regulated exchange of germplasm after the Convention on Biological Diversity plays a critical role in the sharing of germplasm worldwide.

Keywords Germplasm · Access · Exchange · Fruit crops · Utilisation · Exotic germplasm

1 Introduction and background

Biodiversity in general and Plant Genetic Resources (PGR) in particular are at the core of the wealth of a country. They constitute the foundations of food production and nutritional security. The germplasm wealth of a nation is composed of indigenous natural diversity as well as introduced diversity shared across national boundaries. Despite its wealth in

Pratibha Brahmi Pratibha.Brahmi@icar.gov.in indigenous genetic resources, no country is fully independent for its germplasm requirement and always looks for new germplasm sources. Since times immemorial, crop plants have travelled into new areas from their centres of origin through travellers, traders, invaders, explorers, and pilgrims. The history of crop domestication and global dispersal and adaptation suggests that diffusion of PGR (See Glossary) across borders has benefitted almost all countries around the world (Crosby, 1972, 1986; Diamond, 1997; Fowler et al., 2001; Halewood et al., 2014; Mann, 2011; SGRP, 2011; Galluzzi et al., 2016; Ghimiray & Vernooy, 2017). This trend seems to be increasing as a result of challenges such as growing population, food and nutritional requirements, climate change (Burke et al., 2009; Fujisaka et al., 2011; Jarvis et al., 2010; Lane & Jarvis, 2007; Ramirez-Villegas et al., 2013), as well as the

¹ ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India

² ICAR-Indian Agricultural Research Institute, New Delhi 110012, India

evolution of food systems and diets (Khoury et al., 2014). While projecting the importance of germplasm introduction, Thomas Jefferson wrote: "The greatest service which can be rendered any country is to add a useful plant to its culture..." (Jefferson, 1800). Plant introductions are made either knowingly or unknowingly, but the plant wealth of any nation is the result of plant introductions over several centuries. Wheat, rice and maize, which respectively originated from Asia Minor and the Mediterranean region; from the Indian subcontinent, China and Sub-Saharan Africa; and from Mexico, are feeding the entire world today. A wide array of fruits and vegetables provide nutritional security globally, irrespective of their centres of origin. Today the world relishes mangoes and bananas originated from India, and in turn India enjoys the flavour of almost all varieties of fruits originated or domesticated elsewhere. The historic success of the global agricultural research system is undoubtedly attributable to scientists and scientific organisations sharing data, information, and materials across national boundaries, and the adoption of novel cultivated plants by farmers and fruit growers.

India has been, and continues to be, strongly involved in germplasm sharing with many countries. The development of the Indian fruit industry was dependent on indigenous variability for large-scale production until early 1800s. New crops were introduced by royalties, travellers or invaders, enriching the diversity. Selection from natural or introduced diversity was performed by local growers, often patronized by rulers of the time, continued over the years, and resulted in the development of several popular types in different fruits. Gradually, large amount of exotic germplasm was introduced, evaluated, adapted and utilised by breeders and adopted by farmers commercially, which helped in increasing the horticulture production in the country by the late 1990s. India has a single window system, which is operated by Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources (ICAR-NBPGR) for germplasm exchange. This concerns the import, export and quarantine of small samples, including those of transgenics, meant for research use.

The Convention on Biological Diversity (CBD), 1993; the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA), 2004; and the Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of Benefits arising from their Utilisation (NP), 2010 are the three international agreements that have a direct impact on the access, exchange, conservation, and utilisation of PGR (See Glossary) today. Countries that are signatory to the CBD (See Glossary) have developed regulations governing access to biological resources based on "prior informed consent" and "mutually agreed terms". All the 196 member parties of CBD (See Glossary) exchange germplasm under bilateral or reciprocal mode of exchange. The ITPGRFA (See Glossary) is the legal instrument for access and benefit sharing (ABS) in the case of Plant Genetic Resources for Food and Agriculture (PGRFA) for crops listed in Annex I of the Treaty. The NP (See Glossary) aims to provide a fair and equitable share of the benefits resulting from the use of all genetic resources. These policies have an obvious impact on the germplasm exchange patterns of member countries.

The present article is intended to document the extent to which India has sourced germplasm of fruit crops from foreign countries, as well as the extent to which international agriculture has benefitted of Indian germplasm.

The analyses include a retrospective element, which traces the history of domestication or introduction of key fruit crops in India and their subsequent diffusion; a present-day snapshot of important breeding achievements based on international exchanges; and an analysis of challenges and future action plans that are required to promote these exchanges. An analysis of the exchange and utilisation of germplasm of fruit crops in India may provide insights into our journey towards a Golden Revolution (Siddiqui et al., 2014; Dutt, 2016).

2 Data sources and methodology

The present study is based on; (i) actual data retrieved from databases of Germplasm Exchange and Policy Unit (GEPU) and PGR portal of ICAR-NBPGR (See Glossary); data from Agricultural and Processed Food Products Export Development Authority (APEDA); the Food and Agriculture Organization Corporate Statistical Database (FAOSTAT); and Germplasm Resource International Network (GRIN) databases; (ii) a review of available literature and reports, (iii) communications with individual experts in the field of Horticulture, Plant Pathology and Quarantine and PGR for additional information. The review of literature included annual technical reports of various institutes, proceedings of conferences/symposia, newsletters, research articles, consultant reports, and textbooks. To the best of our knowledge, there have been no study regarding germplasm flows in fruit crops and their utilisation.

Released crop varieties in India at state or national level are used for the pedigree study. Review of country and cropspecific pedigree literature has been conducted in combination with personal interviews with end-users of germplasm: amateurs, breeders, researchers, students, and farmers involved in crop improvement programmes. The impact of inflow and outflow of germplasm is studied from interpretations of data on utilisation of germplasm. A slowdown of international exchanges of germplasm would be a critical blow to scientific progress in the world of plant breeding and crop improvement. The constraints which affect smooth germplasm flow among countries are described, and the way forward to enhance a more efficient international flow of germplasm is been presented.

3 Overview of fruit crop diversity in India

India, located between latitude 8°N-38°N and longitude 68°E-97°E and with altitudinal variations ranging from below sea level to over 3500 m above mean sea level, exhibits extreme diversity of edaphic and climatic conditions. It is unique and one of the most significant countries with respect to fruit genetic resources (FGR). Though over 300 species of fruits are grown in India, more than 75 percent of total area under fruit cultivation is occupied by mango, banana, citrus, guava, grape, pineapple, papaya, sapota, litchi and apple (Mitra et al., 2010). India is home to a number of fruit species of global importance including mango, banana, citrus (Table 1). The North Eastern (NE) region of the country, in particular, is endowed with a tremendous diversity of banana and citrus and a number of wild/minor species (Table 2). Several fruits such as bael, jack fruit, karonda, lasoda and phalsa exist in the wild or at local markets. The increasing health awareness makes these fruits becoming popular in large cities and are thus available in super markets. Promotion of these fruits can help in achieving nutritional security in diverse agroclimatic regions.

4 Status of fruit production in India

The context of horticulture in India is rapidly changing with changing lifestyle and health awareness. Horticulture generates about 24.5% of the agricultural GDP (See Glossary) from only about 16% of the total cultivated area. In the past two decades, the area and production of horticultural crops have increased from 12.8 to 25.4 million hectares; and from 95.6 to 311.7 million tons, respectively (Anonymous, 2018b). This results in part from a united approach of policy planners and researchers along with specialised organisations (e.g., NHB, ICAR, APEDA (See Glossary) and Agricultural Universities; Table 3). The availability of improved varieties and technologies is one of the reasons of this expansion (Fig. 1). India is proud to be the second largest producer of fruits and vegetables in the world, with a significant Indian presence in the global market (Table 4). The main fruits grown in India are mango (35.4% of total area under fruits), citrus (15.6%) and banana (13.5%) followed by other fruits such as apple, guava, pomegranate, grape, jackfruit, pineapple, papaya, sapota, aonla and others. India ranks first in the production of banana, mango and papaya in the world (Table 4). A number of new fruits such as kiwi, dragon fruit, blueberry, avocado, persimmon etc. have been introduced, becoming an integral part of the Indian fruit basket. Many fruits are exported to different countries, including grape, banana and mango.

 Table 1
 Fruit crops native to India

Sl. No	Common/ Vernacular name	Scientific name
1	Amra	Spondias pinnata
2	Aonla or Indian gooseberry	Emblica officinalis
3	Bael	Aegle marmelos
4	Banana	Musa spp.
5	Ber/ Indian jujube	Zizyphus mauritiana
6	Carambola	Averrhoa carambola
7	Citrus	Citrus spp.
8	Custard apple	Annona squamosa
9	Elephant apple/ Chalta	Dillenia indica
10	Fig	Ficus carica
11	Jackfruit	Artocarpus heterophyllus
12	Jalpai/ Indian olive	Elaeocarpus floribundus
13	Jamun	Syzygium cuminii
14	Jumrool/Jamrul/Amrool	Syzygium samarangense (syn. Eugenia javanica)
15	Karonda	Carissa carandas
16	Khirni	Manilkara hexandra
17	Kokum	Garcinia indica
18	Lasoda	Cordia myxa
19	Latka/ Burmese grape	Baccaurea sapida
20	Mango	Mangifera indica
21	Passion fruit	Passiflora edulis
22	Phalsa	Grewia asiatica (syn. Grewia subinaequalis)
23	Sat Karal Kafir lime	Citrus hystrix
24	Star Aonla	Phyllanthus acidus
25	Tal/ Palmyrah	Borassus flabellifer
26	Tamarind/ Imli	Tamarindus indica
27	Wood apple/Kath Bael	Feronia limonia

Source: Singh, 1969; Bose et al., 2001

5 Global genebanks for conservation of fruit genetic resources

Despite the existence of 1750 individual genebanks worldwide (FAO, 2010), very few are dedicated to the conservation of FGR (See Glossary). Storage of FGR seeds is difficult. Moreover, because most the fruit crops are cross pollinated, conservation of *true- to-the- type* genotype is possible only through vegetative propagule i.e. either in field genebanks or in vitro-derived shoot-tips and dormant buds conserved using cryopreservation. Throughout the world, conservation of FGR is mostly carried out as field collections (>80%). Major genebanks involved in conservation of fruit germplasm include 11 USDA (See Glossary) repositories devoted to clonally propagated horticultural fruit and nut crops; APGRC (See Glossary), Sudan; ITC (See Glossary), Belgium; CePaCT (See Glossary), Fiji; EMBRAPA-CNPMF (See Glossary), Brazil; Seed Savers Exchange, USA; EURISCO (See Glossary); GFG (See Glossary), Germany; NARO (See Glossary), Japan etc.

Table 2 Wild species of different fruit crops prevalent in India

Genus	Wild species	Area(s) of diversity
Mangifera	M. sylvatica	Andaman Islands
Musa	M. arunachalensis, M. nagalandiana, M. kamengensis, M. puspanjalia, M. aurantiaca, M. manni	North-Eastern states, Western Ghats, Eastern Ghats and the Andaman and Nicobar Islands, West Kameng District, Arunachal Pradesh, Nagaland
Citrus	"Soh Nairiang" a wild sweet orange, wild Indian mandarin (C. indica Tanaka), C. assamensis, C. ichangensis Swingle, C. latipes Tanaka and C. macroptera Mont.	Naga hills, Garo hills of Meghalaya and Kaziranga forests of Assam; NEH region
Malus	M. baccata (L.) Borkh., M. baccata var. himalaica (Maxim.) Schneid., M. baccata var. dirangensis, M. sikkimensis (Wenz.) Koehne ex Schneider	North-Western and Eastern Himalayan regions
Pyrus	P. griffithi Decne., P. jacquemontiana Decne., P. khasiana Decne., P. pashia Buch. & Ham. ex D. Don, P. kumaonii (Decne.) Stapf., P. polycarpa Hook. f., P. pyrifolia (Burm. f.) Nakai var. culta (Makino) Nakai, P. serotina Rehd., P. thomsoni King	North-Western and Eastern Himalayan regions
Sorbus	 S. aucuparia L., S. cuspidata (Spach.) Hedlund., S. foliolosa (Wallich.) Spach., S. granulosa (Bertol.) Rehd., S. insignis (Hook. f.) Hedlund, S. lanata (D. Don) Schner., S. microphylla Wenzi g, S. rhamnoides (Decne.) Rehder 	North-Western and Eastern Himalayan regions
Cotoneaster	C. acuminata Lindl., C. acuminatus Lindl., C. bacillaris Wallich ex Lindl., C. buxifolia Wall., C. falconeri Klotz., C. frigida Wall., C. microphylla Wall. ex Lindl., C. multiflora Bunge., C. nummularia Fish. & Mey., C. roseus Edgew., C. rotundifolia Moench., C. vulgaris Lindl	North-Western and Eastern Himalayan regions
Docynia	D. hookeriana Decne., D. indica Decne	North-Western and Eastern Himalayan regions
Pyracantha	P. crenulata Roem	North-Western and Eastern Himalayan regions
Prunus	P. cerasoides, P. armeniaca, P. persica, P. cornuta, P. salicina, P. nepalensis, P. wallichi, P. jacquemontii, P. mira	North-Western and Eastern Himalayan regions, Shillong platear of Khasi hills in Meghalaya
Ribes	R. alpestre, R. glaciate, R. griffithii, R. nigrum, R. rubrum	North-Western and Eastern Himalayan regions
Rubus	R. ellipticus, R. foliosus, R. fruiticosus, R. lasiocarpus, R. nepalensis, R. niveus, R. paniculatus, R. purpureus, R. hexagynus, R. ferox, R. calycinus, R. pungens, R. rosaefolius, R. saxatilis, R. macilentus, R. acuminatus	North-Western and Eastern Himalayan regions
Vitis	V. himalayana, V. lanata, V. latifolia, V. parvifolia	North-Western and Eastern Himalayan regions
Fragaria	F. nubicola, F. indica	North-Western and Eastern Himalayan regions
Hippophae	H. rhamnoides, H. salicifolia, H. tibetana	North-Western and Eastern Himalayan regions
Viburnum	V. corylifolium, V. cotinifolium, V. grandiflorum, V. jacquemontii, V. mullaha	North-Western and Eastern Himalayan regions
Carissa	C. congesta, C. grandiflora, C. spinarum	North-Western and Eastern Himalayan regions
Elaeagnus	E. angustifolia L., E. latifolia L., E. umbellata Thumb	North-Western and Eastern Himalayan regions
Diospyros	D. kaki, D. lotus	North-Western and Eastern Himalayan regions
Corylus	C. colurna, C. ferox	North-Western and Eastern Himalayan regions
Viburnum	V. corylifolium Hook. f., V. cotinifolium D. Don, V. grandiflorum Wall., V. jacquemontii Planch., V. mullaha Buch Ham.ex D.Don	North-Western and Eastern Himalayan regions

Source: Sharma et al., 2005; Verma et al., 2006; Hellin & Higman, 2009; Diengngan & Hasan, 2015; Mitra et al., 2010

6 Conservation of fruit genetic resources in India

FGR (See Glossary) in India is conserved through a combined in situ approach, where the genetic resources are conserved in their natural habitat, e.g. gene sanctuary with an ex situ approach, which involves storing the seeds at low temperatures, maintaining plants in the field genebank or clonal repositories, botanical gardens and maintaining, cells, tissue, or pollen in vitro and in liquid nitrogen and DNA storage. India has setup its first gene sanctuary in the Garo Hills of Assam for wild relatives of citrus. Efforts are also being made to set up gene sanctuaries for banana and mango. The ICAR-IARI, ICAR-IIHR, ICAR-CITH, ICAR-CISH, ICAR-CIAH (See Glossary) and other cropbased institutes (See Table 6) are the primary institutes

Table 3 Li	st of organisat	ions involved in	n research and	development	of horticul	ture in India
------------	-----------------	------------------	----------------	-------------	-------------	---------------

Acronym	Full name	Mandate
MoAFW	Ministry of Agriculture & Farmers Welfare, Government of India	MoAFW is the apex body for formulation and administration of the rules and regulations and laws related to agriculture in India. It consists of two departments: Department of Agricul- ture, Co-operation and Farmers Welfare (DACFW) and Depart- ment of Agriculture Research and Education (DARE)
ICAR	Indian Council of Agricultural Research	ICAR is an autonomous organization under DARE, MoAFW, Government of India. The council is the apex body for coor- dinating, guiding and managing research and education in agriculture including horticulture, fisheries and animal sciences with 101 ICAR institutes and 71 agricultural universities spread across the country
APEDA	Agricultural and Processed Food Products Export Development Authority	It is an apex body that promotes export trade of agricultural products in India
NHB	National Horticulture Board	The main objectives of the NHB are to improve integrated development of horticulture industry and to help in coordinat- ing, sustaining the production and processing of fruits and vegetables
ATARI	Agricultural Technology Application Research Institute	Coordination and monitoring of technology application and Frontline Extension Education Programmes. Strengthening Agricultural Extension Research and Knowledge Management

involved in introduction and utilisation of fruit germplasm. In India ICAR-NBPGR (See Glossary) works along with its 7 regional stations and 10 National Active Germplasm Sites, which are designated field gene banks for introduction, evaluation, maintenance, and exchange of germplasm of specific crops with ICAR-NBPGR, New Delhi as the Nodal Agency (See Table 6). In vitro conservation and cryopreservation of vegetatively propagated species and prioritized tropical and temperate fruit crops in India is being carried out in multi-crop in vitro repository at TCCU (See Glossary), ICAR-NBPGR, New Delhi, which maintains about 400 accessions of Musa spp. and 300 accessions of temperate and minor fruits in its in vitro repository. Cryopreservation protocols are routinely developed for Malus spp., Morus spp., Musa spp., Pyrus communis and Rubus spp. Dormant-buds are one of the best explants for cryobanking of true-to-the-type cultivars of temperate fruits.

 Table 4
 India's position in world fruit production scenario

Crop	Area (m ha)	Production (m t)	Productivity (t/ ha)
Total fruits	2 nd (6.50)	2 nd (97.39)	2 nd (14.96)
Apple	2 nd (0.30)	5 th (2.30)	9 th (7.66)
Banana	1 st (0.88)	1 st (30.80)	4 th (35.00)
Grape	10 th (0.14)	7 th (2.92)	1 st (20.85)
Mango	1 st (2.25)	1 st (21.82)	5 th (9.69)
Citrus	2 nd (0.14)	3 rd (12.54)	9 th (89.57)
Papaya	1 st (0.14)	1 st (5.98)	6 th (42.71)
Pineapple	2 nd (0.10)	5 th (1.70)	10 th (17.00)

Source: APEDA, 2020; Anonymous, 2018b

7 Domestication/introduction of fruit crops in India: historical perspective

Shruti, Smriti and Samhita of the Vedic age bear clear testimony to the fact that the inhabitants of the towns of Mohanjodaro and Harappa used to cultivate fruits. Earthen vases shaped as pomegranate and coconut; and pendant shaped as lemon leaf suggest their presence in Harappa (Vats, 1940). The date is perhaps the oldest fruit known to ancient Indians (Hutchinson, 1974). The Vriksh Ayurveda, written by Kautilya in 300 B.C is one of the oldest known texts on fruit cultivation (www.shodhganga.inflibnet.ac.in). Medicinal uses of fruits such as *aonla* (*Emblica officinale*), bael (Aegle marmelos (L.) Corrêa), citrus, grape, hog plum, jackfruit, wild fig, monkey jack, jamun (Syzygium cuminii L.), ber (Zizyphus mauritiana), karonda (Carissa carandas), khirni (Manilkara hexandra), lemon, lime, mango, mulberry, orange, phalsa (Grewia asiatica), banana, pomegranate, wood apple etc. have been mentioned in Charaka Samhita and Sushrut Samhita (Chadha & Pareekh, 1993). References regarding bael is abundantly seen in Yajurveda, Atharvaveda, Brahmanas, Kalpasutras and Puranas; mangoes and date palms in the 'Ramayana' and the 'Mahabharata' (Shah, 2014; Singh, 1969). Hiuen Tsiang, the Chinese Budhist pilgrim, who came to India in 629 AD, noted the presence of mango, pomegranate and sweet orange everywhere (Singh, 1969).

Many new fruits were introduced through Mughals, Portuguese, Spanish, French and Dutch (Table 5). Sultan Zain-ul-Abidin "Budshah" (1420–1470) imported many fruit crops from Central Asia. The sixteenth century was

Table 5 List of fruit crops domesticated/introduced in India

Common name	Latin name	Period of introduction	Entity or actor of the introduction/domestication	Reference(s)
Almond	Prunus dulcis (Mill.) D.A. Webb	sixteenth century	Persians	Ahmed and Verma (2009)
Apple	Malus domestica (Suckow) Borkh	nineteenth century	Britishers	Chadha and Patel (2005)
Annonas	Annona spp.	1590	Portuguese	Rajput (1985)
Arabian date palms	Phoenix dactylifera L.	early eighth century	at the time of the first Muslim invasion	Blatter (1926); Cooke (1908)
Avocado	Persea americana Mill.	1914	Lal Bagh Gardens, Bengaluru by American Missionary from Sri Lanka	Swamy (1967)
Black currant	Ribes nigrum L.	nineteenth century	Royal Agri-Horticultural Society, Kolkata	Randhawa (1982)
Blueberries	Vaccinum sp.	2006–07	Shimla Hills by ICAR-NBPGR RS, Shimla	www.tribuneindia.com
Cashew	Anacardium occidentale L.	16 th century	Portuguese	Chadha & Patel, 2005
Custard apple	Annona reticulata L.	16 th century	Portuguese	Verkataratanam and Satyanaranaswamy (1956)
Dragon fruit	Selenicereus undatus (Haw.) D.R. Hunt	1990s	-	Arivalagan et al. (2019)
Gooseberry	Ribes uva-crispa L.	nineteenth century	Royal Agri-Horticultural Society, Kolkata	Randhawa (1982)
Grape	Vitis vinifera L.	620 BC, 1300 AD	Not reported; subsequently by invaders from Persia and Afghanistan	Olmo (1976); Chadha and Pareek (1993)
Guava	Psidium guajava L.	seventeenth century	Portuguese settlers on Western Ghat regions	Dinesh and Vasugi (2010)
Kiwi fruit	Actinidia chinensis Planch.	1963	Plant Introduction Station	Pandey and Tripathi (2014)
Litchi	Litchi chinensis Sonn.	seventeenth century	Budhist Monks	Goto (1960); Knight (1980); Liang (1981)
Longan	Dimocarpus longan Lour.	18th Century	-	Nath et al. (2018)
Macadamia nut	Macadamia integrifolia	1980s	ICAR-NBPGR, New Delhi	Pradhan (2010)
Mangosteen	Garcinia mangostana L.	nineteenth century	Royal Agri-Horticultural Society, Kolkata	Randhawa (1982)
Malayan apple	Syzygium malaccense	16 th Century	Portuguese in Goa region	Zich et al. (2020)
Monk fruit	Siraitia grosvenorii (Swingle) C. Jeffrey ex A.M.Lu & Zhi Y. Zhang	2018	ICAR-NBPGR, New Delhi	Shivani et al. (2021)
Papaya	Carica papaya L.	sixteenth century (1550)	Spanish	Singh (1969)
Passion fruit	Passiflora edulis Sims	early 1910s	British in Nilgiris, Coorg and Malabar regions	Tripathi (2018)
Persimmon	Diospyros kaki L.f	early twentieth century (1921)	European settlers	Thakur and Kashyap (2005)
Pineapple	Ananas comosus (L.) Merr.	sixteenth century (1548)	Portuguese	Collingham (2007)
Pineapple guava	Feijoa sellowiana (O. Berg) O. Berg	1950s	Plant Introduction Division, IARI	Bose et al., (2001)
Pomegranate	Punica granatum L.	first century AD	Mohanjodaro Civilization (Aryans)	Morton (1987)
Rambutan	Nephelium lappaceum	1950s	Amateur fruit growers of Kerala	Tripathi et al. (2020)

Common name	Latin name	Period of introduction	Entity or actor of the introduction/domestication	Reference(s)
Sapota	Manilkara zapota (L.) P. Royen	nineteenth century	Portuguese	Bhaskar et al. (2020)
Strawberry	Fragaria×ananassa (Duchesne ex Weston)	1815	Royal Botanic Garden, Kolkata	Randhawa (1982)
Wax apple	Syzygium samarangense	early twentieth century	Amateur fruit growers of Kerala, Karnataka and Tamil Nadu	Tripathi et al. (2019)
White currant	Ribes rubrum L.	nineteenth century	Agri-Horticultural Society, Kolkata	Randhawa (1982)

Table 5 (continued)

remarkable for plant introduction. The earliest in-depth description of mango, pineapple and custard apple are recorded in *Ain-i-Akbari*, an encyclopaedia written in 1590 AD (Chadha & Pareek, 1993; Rajan & Hudedamani, 2019). Mughal emperor Akbar who ruled northern India from 1556 to 1605 planted an orchard of hundred thousand mango trees near Darbhanga the *Lakhi Bagh* (Mehta, 2017) and many of these trees were found to be vigorous even 300 years later. Vavilov (1926) suggested that the Indo-Myanmar region was the centre of origin of mango based on the observed level of genetic diversity. Scientists of BSIP (See Glossary), Lucknow, have traced the origin of genus *Mangifera* from 60- million- year old fossil leaf imprints in the Palaeocene sediments near Damalgiri, West Garo Hills, Meghalaya (Mehrotra et al., 1998).

The period of British colonization (AD 1757—AD 1947) in India is also replete of references to fruits. This is the period when many exotic fruits such as apple, pear, grapes, strawberry were introduced/popularised (Table 5). Lord Auckland, Governor General during 1836-42, is said to have grown the first modern strawberries in India, but others were also trying across the subcontinent. Mr W.G. McIvor, began large scale cultivation of fruit plants in South India in 1855 and by 1859, he claimed to have 178 species and varieties, most of which were imported from England (Krishnamurthi, 1953). Apples were introduced by the Europeans in Ootacamund (Nilgris, Tamil Nadu) in 1850s. Captain R.C. Lee, Mr. Wilson, M. Ermens, Alexander Coutts, and M. Pychard are the pioneer in introducing apple to different parts of India. However, commercial apple production was given an impetus by Satya Nand (Samuel Nicholas) Stokes, who introduced 'Delicious' group of apples in the first quarter of the twentieth century at Kotgarh, Shimla Hills. Though Muhammed Bin Tughlaq introduced the grape cultivars Bhokri, Fakhri and Sahebi in Aurangabad (Daulatabad) as early as 1338, Punjab was perhaps the first state to engage into large-scale introduction and trials for testing the adaptability of grape varieties. The work though started at Lyallpur (now in West Pakistan) during 1928, the work initiated by Dr G.S. Randhawa and his co-workers during late fifties enriched the Indian grape germplasm wealth at IARI.

In the beginning of the twentieth century, emphasis was placed on the introduction of horticultural crops. In the 1950s the British introduced the green English and the coloured delicious varieties of apple (Singh et al., 2006). Research on temperate fruits was strengthened by the establishment of several research stations. Kiwi fruit or Chinese gooseberry was introduced in India in 1960 at Lal Bagh Gardens, Bengaluru, in 1960 and later in 1963 at the Phagli station of ICAR-NBPGR from the USA. The Kinnow mandarin was introduced from the USA by Dr J.C. Bakhshi (Gill & Mahindra, 2010) which became one of the most promising introductions in India.

8 Set-up of a single window system for exchange of plant genetic resources in India

Although exchange of germplasm has been a part of fruit research in India for a very long time, systematic efforts on germplasm diversity started after the establishment of the Botany Division of the Imperial Agricultural Research Institute in 1905. Further research was strengthened with the opening of a specific Plant Introduction Station in the Division of Botany at ICAR-IARI in 1946. In 1956, the Plant Introduction and Exploration Organisation (Botany Division, ICAR-IARI) was operational. An independent "Plant Introduction Division" was created at ICAR-IARI in 1961 followed by National Bureau of Plant Introduction in 1976 which was later renamed as National Bureau of Plant Genetic Resources in 1977.

Since 1976, the ICAR-NBPGR looks after the activities of germplasm exchange for research purpose within country as well as internationally. Since the late 1970s, the planned introduction of fruit germplasm has been undertaken through ICAR-NBPGR under a specific set of procedures. ICAR-NBPGR has enabled the introduction of 9684 accessions/varieties of fruit crops from over 40 countries under strict phytosanitary conditions. Some of the notable trait specific introductions made during the last 25 years are presented in Table 7.

ICAR-NBPGR has facilitated the import of germplasm of several new crops to the fruit basket of India (See Table 7). Crops such as blueberry, longan, mangosteen, rambutan, avocado, persimmon, macadamia nut, pineapple guava, opuntia pear, and others are being adapted and are awaiting commercialisation. Dragon fruit (*Selenicereus undatus*), dubbed "The Wonderous Fruit of the Twenty-First Century," was first introduced in India in the late 1990s (Arivalagan et al., 2019) and was reintroduced in 2014 through ICAR-NBPGR. Monk fruit (*Siraitia grosvenorii*), a potential crop for use as a natural sweetener, was introduced by ICAR-NBPGR in 2011, and again in 2018 and it is now well established under the Palampur conditions (Shivani et al., 2021).

9 Usage of exotic germplasm in crop improvement

Introduction is perhaps the easiest way to enhance crops with new alleles from exotic sources and wild species through introgression or incorporation. Introgression involves backcrossing a few chromosome segments with easily identifiable effects (often disease resistances) into elite cultivars; whereas, incorporation aims to produce new breeding populations that have very high proportions of unique, exoticderived alleles in order to broaden substantially the crop's genetic base (Simmond, 1993).

9.1 Selection and release as variety

When a new germplasm is introduced, it is tested, and if well adapted and found suitable, it is directly released to farmers' access. This is known as Primary introduction. Some of the outstanding introductions in fruit crops directly released as variety (See Table 8) or released after evaluation and selection (See Table 9) are presented in tabular form. Because most fruit crops are perennial, exotic introductions have been and will continue to be preferred over selection and hybridisation programmes. Farmers are given new opportunities to grow a new crop/variety with increased market potential in this manner. Farmers have developed a number of grape varieties by selecting from exotic germplasm (See Table 9).

9.2 Hybridisation for specific traits

Exotic germplasm in fruit crops is best utilised by breeders through hybridisation followed by selection. Over 60 varieties have been released (See Table 10). The extent of reliance on exotic sources varies from crop to crop. Most of the commercial cultivars of apple, pear, cherry, plum, peach, apricot, persimmon and strawberry are of exotic origin; whereas some cultivars of walnut, sand pear and almond are selections from indigenous germplasm. However, in indigenous crops such as mango, banana, jackfruit, the reliance on foreign germplasm is lower; most of the cultivars are of indigenous origin. In citrus and banana, a number of interspecific hybrids have been developed using various exotic species.

10 Impact of exotic fruit germplasm on fruit production in India

In the 1960s, eating fruits was a status symbol; even a middle class family could not afford much fruits due to very low *per capita* access, *i.e.* 82 g/day (Fig. 1). Only mango, banana, citrus and minor fruits such as *bael*, *aonla* and *karonda* were available in the market for common people. Fruits such as apple and pomegranate were used only for sickness treatments. The growth of horticulture sector resulting from improved varieties and innovative technologies and their large scale adoption made India a leader in fruit production with per capita availability reaching 200 g/day (Fig. 1). The significant rise in productivity results from the continuous improvement work conducted by various institutions and farmers' adoption. Introduction of promising germplasm has played a significant role in crafting the current horticulture industry.

A good example of introduction is that of the dragon fruit, which was imported from Vietnam and Thailand and which used to be very costly in India. The introduction and adaptation of this crop in the North-East region of India and Maharashtra will make it affordable in large quantities. The examples of kiwi fruit and strawberry are similar. India has witnessed a sharp increase in area and production of banana, apple, grape, papaya and pineapple since the last 57 years (Figs. 2, 3, 4, 5, 6). Germplasm imported from other countries certainly has played an important role in this result. With the introduction of spur type and other coloured strains, apple production in Himachal Pradesh has increased dramatically with a high benefit-cost ratio (Fig. 7).

11 Diffusion and outflow of Indian fruit germplasm around the world: a historical perspective

India has shared its fruit diversity with other parts of the world since time immemorial. Mango and banana are few of the most important examples of outflow of germplasm from India to other parts of the world. The Chinese traveller Hiuen Tsang, who visited India between 632–645 AD, was the first to bring

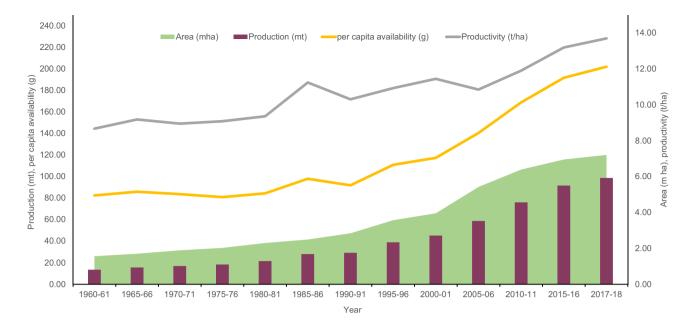


Fig. 1 Area, production and productivity and per capita availability trends of fruits in India in last five decades (Source: constructed by the authors from FAOSTAT, accessed on 02/11/2020)

mango to the notice of the outside world (Rajan & Hudedamani, 2019). Today mango is relished throughout the world and may be considered as one of the choicest Indian gifts to the world. It is believed that King Rana Bahadur Shah established a well-designed garden at *Sera Phant (Sera Bagaincha)* of Nuwakot focusing mango orchard for the first time in Nepal (Gotame

et al., 2020). The earliest cultivation of banana is reported from India (Reynolds, 1951), however, it was Alexander's delectable dessert in 327 B.C. during his invasion of India that led to the fruit's widespread migration (www.news.un.org/en/story/2006/05/177262). Banana travelled from India to the Middle East, where it acquired its current name from the Arabic banan, or

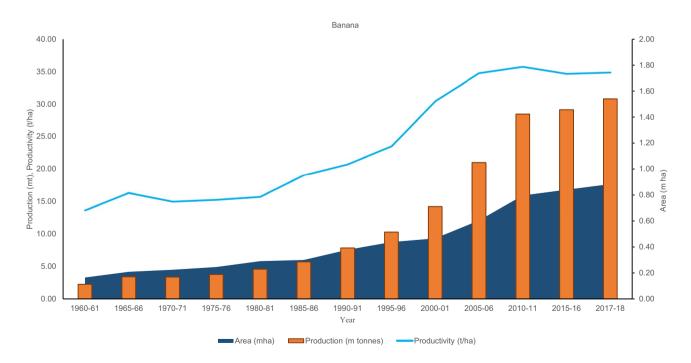


Fig. 2 Area, production and productivity trends of banana in India in last five decades (Source: constructed by the authors from FAOSTAT, accessed on 02/11/2020)

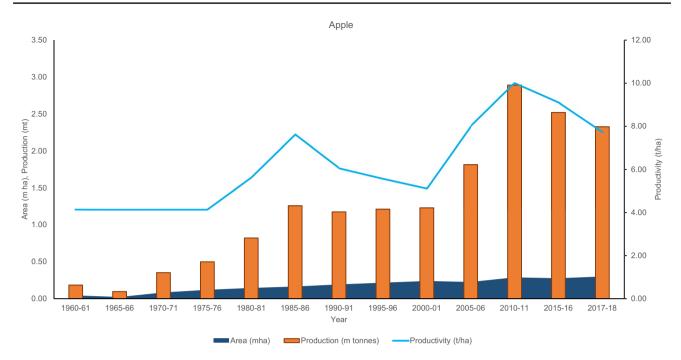


Fig. 3 Area, production and productivity trends of apple in India in last five decades (Source: constructed by the authors from FAOSTAT, accessed on 02/11/2020)

finger, and from there Arab traders took it to Africa, where the Portuguese transported it to the Caribbean islands and Latin American countries (Reynolds, 1951).

Although exchanges through travellers or pilgrims have historically been common practice, controlled exchanges started with the inception of ICAR-NBPGR under a set procedure for research use. Since 1976, a total of 937 accessions/ varieties of fruit crops were exported to numerous countries (Gautam et al., 2000; Anonymous, 1995, 1996, 1997, 2000, 2001, 2002, 2003, 2004, 2010, 2012, 2015, 2017).

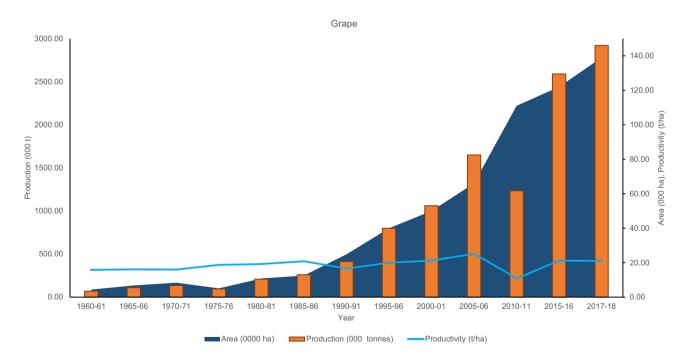


Fig. 4 Area, production and productivity trends of grapes in India in last five decades (Source: constructed by the authors from FAOSTAT, accessed on 02/11/2020)

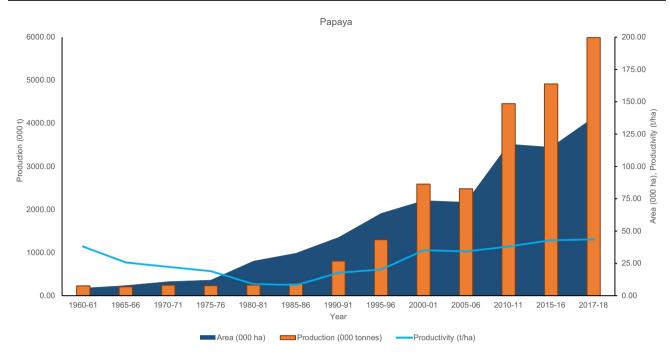


Fig. 5 Area, production and productivity trends of papaya in India in last five decades (Source: constructed by the authors from FAOSTAT, accessed on 02/11/2020)

12 Usage and impact of Indian germplasm around the world

The Indian FGR (See Glossary) are being utilised in numerous countries either directly as a variety or as parents in hybridisation programme. Some of the important fruit germplasm from India being maintained or utilised in breeding programmes worldwide are presented in Table 11. The Indian subcontinent has made an enormous contribution to the global genetic base of mangoes and bananas. The impact of Indian mango 'Mulgoba' in Florida mango industry is a good example. Indian mango varieties are very well placed in the commercial growing of several countries. Out of the 260 mango varieties reported in Pakistan, 10 Indian varieties are reported to be commercially

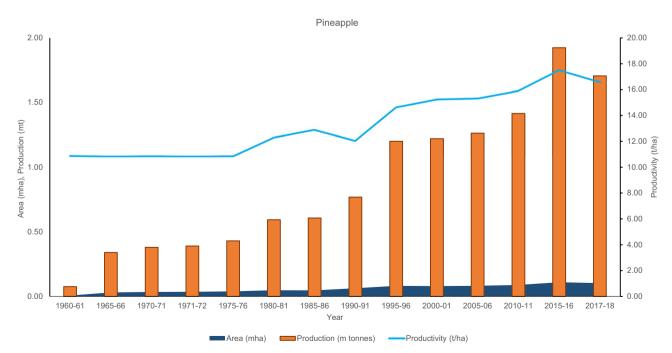


Fig. 6 Area, production and productivity trends of pineapple in India in last five decades (Source: constructed by the authors from FAOSTAT, accessed on 02/11/2020)

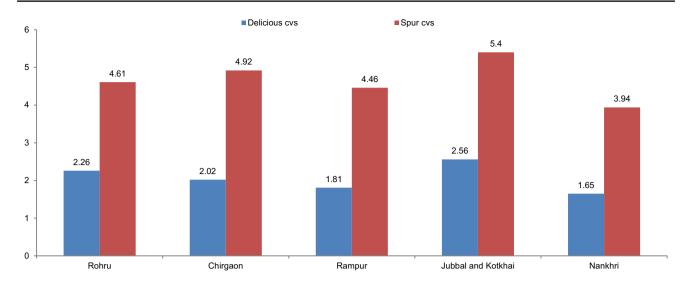


Fig. 7 Benefit: Cost ratio of spur type and delicious cultivars of apple growing in different blocks of Shimla (Source: ICAR-ATARI, Ludhiana, 2019)

important (Amin & Hanif, 2002), with three Indian varieties being the leading export varieties (Nafees et al., 2013). Eight Indian varieties are commercially grown in Bangladesh and 7 in Egypt (See Table 11). Five mango varieties in Brazil and 6 in USA have been released utilising Indian mango germplasm (See Table 12).

Most of the cultivars of tropical fruits grown in Nepal are introduced from India. A number of accessions/varieties of citrus, *aonla*, apple and kiwi fruit were supplied from India and being maintained in Nepal (Gautam & Gotame, 2020). Indian papaya varieties Pusa Dwarf and Farm Selection-1 are reported to be the most preferred genotypes in Nepal (Chaudhary et al., 2012). Farmers are particularly interested in Indian and Thai varieties that produce very large and tasty fruits (Kalinganire et al., 2008; Kone et al., 2009).

13 Challenges of germplasm exchange and utilisation

There are several challenges in sharing germplasm beyond boundaries and in their proper and effective utilisation. Some of these are discussed below.

13.1 Perishable nature of planting material and maladaptation

Except for few fruits such as papaya, citrus rootstock, and macadamia nut, which are propagated through seeds, the majority of fruits are propagated through bud woods, cuttings, and tissue cultured plantlets. These require special handling and maintenance. Furthermore, the introduced germplasm often fails to establish and adapt in new environment due to maladaptation. As a result, a single variety/ genotype often needs to be reintroduced several times for its successful introduction.

13.2 Introduction of invasive pests and diseases

The introduction of new genetic material is frequently associated with the risk of introducing exotic pests and diseases. A slew of new diseases and pests have emerged over the years, wreaking havoc (See Table 13). The quarantine examination ensures that no pests or diseases escape when introductions concern small samples and introductions for research purposes; however, commercial imports of fruit crops in large quantities pose a risk of such escape. Furthermore, online web sites and large-scale business nurseries that are importing large number of exotic planting material and are selling plant material directly to growers represent possible route for the introduction of pathogens and pests. One famous example is the spread of Phylloxera, when a North American aphid was accidentally introduced into continental Europe around 1865 and devastated much of Europe's grape-growing regions. This led to the establishment of first international plant protection convention, namely Phylloxera Convention signed by five countries in 1881.

13.3 Challenges of regulatory mechanism

The complex web of MTAs (See Glossary), licences, contracts, patents, and phytosanitary restrictions that surround the exchange of plant germplasm today restrain exchanges among plant breeders and farmers worldwide (Luby et al., 2015). Most elite material is now proprietary, limiting plant breeders' access to diverse cultivars and the traits they contain, impacting exchange of germplasm, thus affect development of new cultivars. Over the last decade, India has gradually replaced licencing and discretionary import controls with deregulation and simplified import procedures. Most import items are subject to India's EXIM (See Glossary) Policy regulation of Open General License, which states that they are freely importable without restrictions or a licence, except to the extent that they are regulated by existing policy's provisions or any other law.

14 Strengthening international exchange of fruit germplasm

The access and use of FGR (See Glossary) worldwide need to be strengthened to contribute more to global food and nutritional security. This is discussed below.

14.1 National and international agreements

International agreements have facilitated international exchanges of germplasm. India has ratified all three treaties (CBD, ITPGRFA and NP) and also enacted its own Biological Diversity Act (BDA), in 2002 that governs the ABS (See Glossary) mechanisms of genetic resources held within its political boundaries. The NBA (See Glossary) serves as the nodal body for granting permission to foreign researchers for use of Indian biological resources. CBD's 196 members exchange germplasm in a bilateral or reciprocal exchange. ICAR-NBPGR being the nodal agency for the management and exchange of PGR (See Glossary) for research purposes in India, coordinates the supply of PGRFA (See Glossary) of Annex 1 crops including fruit crops such as Artocarpus (breadfruit), Citrus, coconut, strawberry, apple, banana/ plantain and their facilitated exchange for research, breeding and training purposes under the conditions of an SMTA (See Glossary).

14.2 Adoption of biosafety protocols

The adoption of biosafety protocols such as the SPS Agreement formulated under IPPC (See Glossary) facilitates the global movement of plants and plant materials and encourages WTO (See Glossary) members to base their phytosanitary measures on IPPC standards. The Cartagena Protocol on Biosafety, a supplementary agreement to the CBD (See Glossary), was adopted in 2000 and is designed to protect biological diversity from potential risks posed by LMO (living modified organisms). Regulations and legislations for GMO (genetically modified organisms) vary from country to country.

14.3 Introduction & conservation of crop wild relatives

Exchange of CWRs (See Glossary) among countries will enhance the sharing of germplasm. India's wealth in wild species (Table 2), is yet to be utilised by researchers in India and in the world. Efforts have been initiated to tag the holdings of CWR (See Glossary) in national and international genebanks and prioritisation of future collection efforts (Castañeda-Álvarez et al., 2016). The Crop Trust has established pre-breeding projects to collect crop wild relatives of 29 priority crops including apple and banana among fruit crops to ensure their long-term conservation and their enhanced utilisation in breeding programs (Crop Trust, 2020).

14.4 Germplasm management using modern tools and techniques

Novel methods for linking traits to genebank accessions can enhance the efficacy of genebanks, which in turn may lead to better and more efficient trait-specific exchange of germplasm. Tools, such as the Focused Identification of Germplasm Strategy (FIGS), combine environmental and plant characteristics. This will facilitate the identification of germplasm with traits of potential interest for specific environments (Khazaei et al., 2013). New generation breeding techniques such as cisgenic and genome editing could be used for shortening the breeding period in fruit crops and also addressing the issues related with animal and plant sources of gene(s).

15 Conclusion

Enhanced utilisation and smooth flow of germplasm around the world is necessary for conservation and sustainable utilisation of genetic resources for food and nutritional security, both in India and across the world. The present germplasm flows are not restricted to their centres of diversity, but are based in international and national genebanks and breeding programs, which are based in various parts of the world. India has been and continues to be highly interconnected for germplasm share with a number of countries. In the last twenty-five years, India developed work plans for the exchange of germplasm with many institutions and countries. India is party to various treaties and these instruments facilitate better collaboration on exchanges. Addition of more crops to the list of Annex I crops may facilitate better exchange of germplasm for research use. India is looking forward for enriching its fruit basket with introductions of new crops and germplasm, which may add diversity and help to achieve food and nutritional security.

Annexures

Acronym	Full Name	Mandated fruit crop(s)
ICAR- NRCB ICAR- NRCG	ICAR-National Research Centre for Banana, Trichy ICAR-National Research Centre for Grapes, Pune	Musa spp. Vitis spp.
ICAR- NRCL ICAD NDCD	ICAR- National Research Centre on Litchi, Muzaffarpur ICAD National Descents Centre on Democratule Science	Litchi chinensis Dunico comortum
ICAR-CIAH ICAR-CIAH	ICAR- valuonar research Centre on Fornegranae, Sotapur ICAR-Central Institute for Arid Horticulture, Bikaner	Functa granatum Horticultural crops of Arid and semi-arid region viz., Ziziphus spp., Punica granatum, Emblica officinalis, Phoenix dactylifera, Aegle marmelos, Opuntia ficus indica, Grewia subinaeqaualis, Ficus carica, Morus alba, Citrus sinensis, Carrisa congesta, Cordia myxa, Feronia limonia, Capparis decidua, Syzyeium cumini, Mangifera indica, Psidium guaiaya
ICAR- CISH	ICAR- Central Institute for Subtropical Horticulture, Lucknow	Mangifera indica, Psidium guajava, Syzygium cumini
ICAR- CITH	ICAR- Central Institute of Temperate Horticulture, Srinagar	Malus spp., Cydonia oblonga, Prunus amygdalus, Prunus domestica, Prunus armeniaca, Prunus avium, Prunus persica var. nucipersica, Pyrus communis, Juglans spp.
ICAR- IIHR	ICAR- Indian Institute of Horticultural Research, Bengaluru	Mangifera indica, Punica granatum, Vitis vinifera, Artocarpus heterophyllus, Psidium guajava, Syzygium cumini, Achras sapota, Carica papaya, Annona squamosa, Citrus spp., Aegle marmelos, Garcinia indica
ICAR- IARI	ICAR- Indian Agricultural Research Institute, New Delhi	Mangifera indica, Vitis spp., Psidium guajava, Carica papaya, Citrus spp.
ICAR- CCRI	ICAR- Central Citrus Research Institute, Nagpur	Citrus spp.
ICAR-NBPGR (7 regional stations)	ICAR-National Bureau of Plant Genetic Resources (RS Shimla, Bhowali, Thrissur, Jodhpur, Srinagar, Ranchi, Shillong)	Actinidia deliciosa, Aegle marmelos, Artocarpus spp., Averrhoa carambola, Capparis decidua, Carissa carandas, Citrus spp., Cordia myxa, Cotoneaster horizontalis, Feijoa sellowiana, Ficus benjamina, Diospyros kaki, Fragaria ananassa, Garcinia spp., Juglans regia, Malus spp., Mangifera indica, Morus spp., Musa spp., Passiflora edulis, Phoenix dactylifera, Phyllanthus emblica, Prunus spp., Psidium guajava, Punica granatum, Pyrus spp., Rubus idaeus, Simmondsia chinensis, Syzygium cuminii, Tamarindus indica, Vitis spp., Zizyphus mauritiana
AICRP-F (30 State Agricultural Universities, 14 ICAR-Institute, 4 Central Agricultural University, one private center in Pune and one under the Government of Arunachal Pradesh)	ICAR- All India Coordinated Research Project- Fruits (50 centers)	Artocarpus heterophyllus, Achras sapota, Carica papaya, Citrus spp., Mangifera indica, Musa spp., Litchi chinensis, Psidium guajava, Vitis vinifera

Crop	Variety/ germplasm	Trait(s)	Reference
Almond	Ferragnes	Large size, late flowering and smooth skinned	Anonymous (2017)
	Ferralise	Large size, late flowering and smooth skinned	Anonymous (2017)
	Tardy Large	Large size, late flowering and smooth skinned	Anonymous (2017)
Apple	Red Spur, Oregon Spur, Well Spur	Early, suitable for high density planting	Gautam et al. (2000)
	Mollies Delicious	Suitable for mid hill areas	Gautam et al. (2000)
	Merton 779	Recommended as commercial rootstock for apple in Kumaon hills	Ghosh (2012)
	EMLA-111	Rootstock suitable for drought prone areas	Ghosh (2012)
	EMLA-9	Rootstock suitable for high density planting on irrigated deep soils	Ghosh (2012)
	Anna	Apple scab, powdery mildew, cedar apple rust and fire blight resistant	Ghosh (2012)
	MM-111, M-9, M-26, M-4, M-7, MM-106	Dwarfing rootstock	Ghosh (2012)
	G-41	Fire blight and Phytophthora resistant	Anonymous (2019)
	MM-111	Excellent anchorage, no staking required, drought tolerant, resistant to collar rot and woolly aphids and moderately resistant to fireblight	Anonymous (2019)
	EC971990-97199	Resistant to fire blight and phytophthora, resistant to collar rot, woolly aphid and drought tolerant	Anonymous (2019)
Avocado	Pollock	Low oil content	Anonymous (2009)
	Pinkerton	Excellent peeling	Anonymous (2009)
	Bacon, Zutano, Reed, Pinkerton, Duke 7, The Sharwill, Ettinger, Lam Hass, Toro canyon	Improved varieties	Anonymous (2020)
	Gwen	Dwarf variety	Anonymous (2020)
	Fuerte	Cold tolerant	Anonymous (2020)
Banana	EC160160	Resistant to bunchy top virus	Gautam et al. (2000)
	Musa textilis	Wild banana	Anonymous (2019)
	Musa jackeyi	Wild banana	Anonymous (2019)
Blueberry	EC562075-78	Firm fleshed, good flavour, vigorous, resistant to cracking, early ripening	Anonymous (2002)
Babaco (Carica pentagona)	EC407405	High yielding type	Anonymous (1997)
Cranberry	EC562097	Prolific bearer, good keeping quality, resistant to leaf hopper	Anonymous (2005)
	EC562086	Resistant to blunt nose leaf hopper and false blossom	Anonymous (2005)
Ficus	EC390352-59	Large fruits	Gautam et al. (2000)
	EC167661-77	Seedless type	Gautam et al. (2000)
Grape	EC873363-75	Resistant to cracking, large clusters, hardy vine with bunch-rot disease resistance	Anonymous (2017)
	EC881483-537	Large and deep purple-red; very sweet, virtually seedless; double flowered	Anonymous (2017)
	Vitis gigas, V. caribbeana, V. munsoniana, V. smalliana, V. cineraria, V. shuttleworthi, V. arizonica and V. monticola	Resistant to biotic (downy mildew, powdery mildew and anthracnose) and abiotic (salinity, drought) stress tolerance	Singh and Rana (1993)
Grapefruit	Star Ruby	Very deep red fleshed, with red blush on fruit surface	Anonymous (2018a)
Guava	EC147033-038	Seedless	Gautam et al. (2000)
	EC256005	Very large sized fruits	Gautam et al. (2000)
	EC313012	Seedless large fruit	Gautam et al. (2000)

Table 7 Some of the trait specific germplasm/ varieties introduced/reintroduced in India through ICAR-NBPGR

Crop	Variety/ germplasm	Trait(s)	Reference
Kiwi fruit	Bliss Yellow	Yellow flesh colour, high TSS	Anonymous (2020)
	Bliss Red	Dark yellow flesh	Anonymous (2020)
	Nugget	Flesh dark yellow with white core colour	Anonymous (2020)
	El dorado	High TSS	Anonymous (2020)
	Blade	High TSS	Anonymous (2020)
	Tomuri	Suitable as male parent	Anonymous (2020)
Macadamia nut	EC896466-78	Early, heavy bearer, anthracnose resistant, large clusters of uniform well shaped nuts	Anonymous (2017)
	EC884114	Drought resistant	Anonymous (2017)
	EC884116	Rust resistant	Anonymous (2017)
Olive	EC206629	Oil variety, small size fruit, frost resistant, very tall	Gautam et al. (2000)
	EC206630	Table variety, medium size fruit, low in oil, frost susceptible	Gautam et al. (2000)
	EC206631	Table variety, best for pickling (green table olives), very large fruit low in oil content (16–22%), frost resistant	Gautam et al. (2000)
Strawberry	Arking	Leaf spot, leaf scorch, powdery mildew and red stele resistant	Anonymous (2007)
	Belrubi	Large fruits	Anonymous (2007)
	Tyee	Resistant to spotted spider mite	Anonymous (2007)
	Vesper	Large fruits	Anonymous (2007)
	Vantage	Resistant to <i>Verticillium</i> wilt, leaf scorch and powdery mildew	Anonymous (2007)
	Senga sengana	Good freezing quality	Anonymous (2007)
	Sumas	Early ripening, resistant to red stele races A-1, A-3, A-4 and tolerant to fruit rot	Anonymous (2007)
	Joliette	Adapted to heavy soil, low temp tolerant, powdery mildew, leaf scorch, leaf blight and leaf spot resistant	Anonymous (1997)

Crop	Variety	Source country		Year of release
Banana	Lady Finger	Australia		-
	Grand Nain M.S	France		-
	Valery	West Indies		-
Рарауа	Sunrise Solo	USA		_
Pomegranate	Shirin Anar	USSR		-
	Wonderful	USA		-
Jacoticaba	Sahara Blanc M 8962	USA		-
(Myrciaria cauliflora)	March 1	Land		
Apple	Vered Delicious-II	Israel USA		-
	Red Baron	USA		-
	Mollies Delicious	USA		
	Skyline Supreme Red Delicious	USA		-
Pear	Flemish Beauty	USA		_
	Max Red Bartlett	Italy		-
	Devoe	USA		-
	Manning Elizabeth	USA		-
Peach	Stark Early Glo	USA		-
	Candor	USA		-
	Flordasun	USA		1976
	Earli Grande	USA		1976
Plum	Methley	Kenya		-
	Kanto-5	USA		-
Apricot	Nugget		USA	-
	Coninos		Italy	-
Almond	Non Pareil	USA		-
Walnut	Lake English	USA		-
	Hansen	USA		-
	Payne	USA		-
Pecan nut	Tutle 31	USA		-
(Carya illinoensis)	Mahan	USA		1932
Kiwi fruit	Allison, Bruno, Abbott, Monty, Hayward	New Zealand		-
Pineapple guava	Nikitsky	USSR		-
(Feijoa sellowiana)	,			
Pineapple	Kew	USA		-
Grape	Perlette	USA		1958
	Thompson Seedless	Australia		1936
	Muscat of Hamburg (Gulabi)	Australia		1936
	Kishmish Chorni	USSR (Uzbekistan)		1964
	Beauty Seedless	USA		1964
	Flame Seedless	Australia		1993
	Red Globe	USA		1985
	Crimson Seedless	USA		2002
	Italia	Originally from Italy but introduced from USA		2002
	Cabernet Sauvignon	France		1982

Table 8 Some outstanding examples of primary introduction in fruit crops/varieties in India

Table 8 (continued)

Crop	Variety	Source country	Year of release
	Chenin Blanc	France	1987
	Sauvignon Blanc	Blanc	1987
	Shiraz	France and Australia	1993
	Zinfandel	France	1995
	Malbec	France	1995
	Ugni Blanc	France	1995
	Grenache	France	1995
	Centennial Seedless	USA and Australia	1985
	Fantasy Seedless	USA	2001

Source: Singh et al., 2009; Mitra & Dinesh, 2019; Chadha & Pareek, 1993

Crop	Variety	Exotic germplasm utilised	Method of breeding	Releasing institute/ Farmer's name	Year of release
Apple	Chaubattia Agrim	Early Shanburry	Mutant of Early Shanburry	HETC, Ranikhet, Uttarakhand	1984
Apricot	Chaubattia Alankar	(Kaisha x Charmagz) budwood irradiation with gamma rays	Induced mutation	HETC, Ranikhet, Uttarakhand	1984
	Chaubattia Madhu	(Turkey x Charmagz) budwood irradiation with gamma rays	Induced mutation	HETC, Ranikhet, Uttarakhand	1984
	Chaubattia Kesri	(St Ambroise x Charmagz) budwood irradiation with gamma rays	Induced mutation	HETC, Ranikhet, Uttarakhand	1984
Mango	Pusa Surya	Eldon	Selection	IARI, New Delhi	2002
Grape	New Perlette (HS 37-6)	Perlette	Natural sport	HAU, Hisar	1976
	Pusa Seedless	Thompson Seedless	Clonal selection	IARI, New Delhi	1970
	Sonaka	Thompson Seedless	Clonal selection	Late Nanasaheb Kale, Nanaj, Solapur, Maharashtra	1977
	Manik Chaman	Thompson Seedless	Clonal selection	Mr. T.R. Dabade, Nannaj, Solapur, Maharashtra	1982
	Tas-a-Ganesh	Thompson Seedless	Clonal selection	Mr. Vasant Rao Arve, Tasgaon, Sangli, Maharashtra	1976
	Monika	Thompson Seedless	Clonal selection	Mr. A.G. Meher, Narayangaon, Pune, Maharashtra	1980
	Maruti Seedless	Thompson Seedless	Clonal Selection	Mr. Maruti Ramchandra Mali, Miraj, Sangli, Maharashtra	1993
	Manjari Naveen	Centennial Seedless	Clonal selection	NRCG, Pune	2008
	Manjari Kishmish	A mutant selection from Kishmish Rozavis	Mutant selection	NRCG, Pune	2017
	Madhu Angoor	Carolina Black Rose	Clonal selection	ANGRAU, Hyderabad	1998
	Sharad Seedless	Kishmish Chorni	Bud sport of Kishmish Chorni	Nanasaheb Kale, Nanaj, Solapur	1980
	Mahadev Seedless	Kishmish Chorni	Bud sport of Kishmish Chorni	Mr. Gausmohammed Saipan Shaikh, Boramani, Solapur	2006
	Sarita Seedless	Sharad Seedless	Clonal selection	Mr. Dattatraya Nanasaheb Kale, Nanaj, Solapur	1996
	Nanasaheb Purple	Sharad Seedless	Clonal selection	Mr. Dattatraya Nanasaheb Kale, Murajipeth, Nanaj, Solapur	1998
	Nath Jambo	Sharad Seedless	Clonal selection	Mr. Vithal Nivrutti Thorat, Kalamb, Tal. Ambegaon	2006
	Krishna Seedless	Sharad Seedless	Clonal selection	Mr. Narayan Sangapa Mali, Sangli	2006
Papaya	CO5	Selection from Washington	Selection	TNAU, Tamil Nadu	1985
	Punjab Sweet	Selection from germplasm from Kenya	Selection after sib-mating	PAU, Ludhiana	-
	Coorg Honey Dew	Selection from Honey Dew	Selection	IIHR, Bengaluru	-

Source: Singh et al., 2009; Mitra & Dinesh, 2019; https://nrcgrapes.icar.gov.in

Table 10 Utilisation of exotic germplasm of fruit crops in varietal development through hybridisation in India

Crop	Variety/Hybrid	Exotic germplasm utilised	Releasing institute	Year
Apple	Lal Ambri	Red Delicious x Ambri	SKUAST (K), Srinagar, J&K	1973
	Sunehari	Ambri x Golden Delicious	SKUAST (K), Srinagar, J&K	1973
	Akbar	(Golden Del. x Rome Beauty) x M. floribunda	SKUAST (K), Srinagar, J&K	1987
	Firdous	Ambri x Cox's Orange Pippin	SKUAST (K), Srinagar, J&K	1984
	Shireen	Lord Lamborne x Melba XR-12740-7A	SKUAST (K), Srinagar, J&K	1984
	Ambred	Red Delicious x Ambri	YSPUH&F, Nauni (Mashobra), HP	1978
	Ambrich	Richard x Ambri	YSPUH&F, Nauni (Mashobra), HP	1978
	Ambstarking	Starkign Delicious x Ambri	YSPUH&F, Nauni (Mashobra), HP	1978
	Ambroyal	Starking Delicious x Ambri	YSPUH&F, Nauni (Mashobra), HP	1986
	Chaubattia Anupam	Early Shanburry x Red Delicious	HETC, Ranikhet, Uttarakhand	1984
	Chaubattia Princess	Early Shanburry x Red Delicious	HETC, Ranikhet, Uttarakhand	1978
	Chaubattia Swarnima	Benoni x Red Delicious	HETC, Ranikhet, Uttarakhand	1978
	Chaubattia Anurag	Esopus Spitzenberg x Red Delicious	HETC, Ranikhet, Uttarakhand	1984
	Chaubattia Alankar	Fanny x Red Delicious	HETC, Ranikhet, Uttarakhand	1986
	Pusa Gold	Golden Del. x Tydeman's Early Worcester	IARI, RS, Shimla	-
	Pusa Amartara Pride	Royal Delicious x Prima	IARI, RS, Shimla	-
Custard apple	Arka Sahan	Island Gem (Anonna atemoya) x Mammoth (A. squomosa)	IIHR, Bengaluru	1995
Peach	Saharanpur Prabhat	Sharbati x Flordasun	FRS, Saharanpur	1988
	Shan-i-Punjab	(South Island) F ₃ x Springtimes	PAU, Ludhiana	
Mango	Pusa Arunima	Amrapali x Sensation	IARI, New Delhi	2002
	Pusa Pratibha	Amrapali x Sensation	IARI, New Delhi	2011
	Pusa Shreshth	Amrapali x Sensation	IARI, New Delhi	2011
	Pusa Lalima	Dashehari x Sensation	IARI, New Delhi	2011
	Pusa Deepshikha	Amrapali x Sensation	IARI, New Delhi	2020
	Konkan Samrat	Alponso x Tommy Atkins	RFRC, Vengurle	2014
Papaya	Co3	Co2 x Sunrise Solo	TNAU, Tamil Nadu	1983
	Co4	Co1 x Washington	TNAU, Tamil Nadu	1983
	Arka Surya	Sunrise Solo x Pink Flesh Sweet	IIHR, Bengaluru	1994
	Arka Prabhath	(Surya x Tainung-1) x Local Dwarf	IIHR, Bengaluru	- 1995
	HPSC-3 RCTP-1	Tripura Local x Honey Dew Tripura Local with different genotypes including Honey Dew	ICAR RC-Tripura Centre ICAR	2014
Pomegranate	Solapur Lal	Bhagawa x [(Ganesh x Nana) x Daru]	NRC Pomegranate, Solapur	2014
romegranate	Solapur Anardana	Bhagawa x [(Ganesh x Nana) x Daru]	NRC Pomegranate, Solapur	2017
Grape	Pusa Navrang	Madeleine Angevine x Rubi Red	IARI, New Delhi	1997
	Pusa Urvashi	Hur x Beauty Seedless	IARI, New Delhi	1997
	Pusa Aditi	Banqui Abyad x Perlette	IARI, New Delhi	2018
	Pusa Trishar	(Hur x Bharat Early) x Beauty Seedless	IARI, New Delhi	2018
	Pusa Swarnika	Hur x Cardinal	IARI, New Delhi	2018
	Arkavati	Black Champa x Thomson Seedless	IIHR, Bengaluru	1980
	Arka Kanchan	Anab-e-Shahi x Queen of Vineyards	IIHR, Bengaluru	1980
	Arka Chitra	Angur Kalan x Anab-e-Shahi	IIHR, Bengaluru	1994
	Arka Majestic	Angur Kalan x Black Champa	IIHR, Bengaluru	1994
	Arka Neelmani	Black Champa x Thompson Seedless	IIHR, Bengaluru	1991
	Arka Soma	Anab-e-Shahi x Queen of Vineyards	IIHR, Bengaluru	1994

Table 10 (continued)

Crop	Variety/Hybrid	Exotic germplasm utilised	Releasing institute	Year
	Arka Trishna	Bangalore Blue x Convent Large Black	IIHR, Bengaluru	1994
	Arka Shyam	Bangalore Blue x Black Champa	IIHR, Bengaluru	1980
	Arka Shweta	Anab-e-Shahi x Thompson Seedless	IIHR, Bengaluru	1994
	Arka Hans	Bangalore Blue x Anab-e-Shahi	IIHR, Bengaluru	1980
	Arka Krishna	Black Champa x Thompson Seedless	IIHR, Bengaluru	1994
	Manjari Medika	Pusa Navrang x Flame Seedless	NRCG, Pune	2017

Source: Singh et al., 2009; Singh & Sharma, 1996; Chadha & Pareek, 1993

Table 11 List of important fruit germplasm from India being maintained/utilised/cultivated in different countries

Crop	Indian germplasm/ variety	Country	Reference
Mango	Bombay Green, Bombay Yellow, Maldahiya, Dashehari, Calcuttia, Mallika, Amrapali, Chausa, Gola, Jarda, Shilhat, Alphonso, Anupati, Bhadaiya Maima, Fazli, Gulab Khas, Jardalu, Sukul, Sukhtara, Anarbahartal, Bathuwa, Kishnabhog, Langra, Ladbi Midhuwa, Lal Maldahiya, Maghukupia, Sipiya, Safeda Maldahiya, Radi, Neelam, Gulab Bhog, Hattijhul, Suvarnarekha, Kapari, Gurkha, Kalepad, Late Green, Malewa Safeda, Mombasa, Sukhia, Totapuri	Nepal	Kaini (1994); Gotame et al. (2014)
	Anwar Ratole, Dushehri, Samar Bahisht Chaunsa, Langra, Neelam, Fajri, Ratole No. 3	Pakistan	Riaz et al. (2018)
	Mulgoba, Alphonso, Suvarnrekha, Sendura, Galour, Kesar, Pairi, Ratna, Sindhu, Dolores, Brindibani, Himsagar	Israel	Sherman et al. (2015)
	Alphonso	Japan	Yamanaka et al. (2019)
	Mallika, Langra Benarasi, Alphonso, Royal Special and Totapuri	Florida	Warschefsky and Wettberg (2019)
	Fazli, Gopal Bhog, Himsagar, Khirsapati, Langra, Kishanbhog, Kohinoor, Mohan Bhog	Bangladesh	www.mangifera.res.in
	Alphonso, Bullock's Heart, Hindi Be Sennara, Langra, Mabrouka, Taimour, Zebda	Egypt	www.mangifera.res.in
	Amrapali, Mallika	Brazil	Pinto et al. (2004)
Banana	Harichhal, Chinia Champa	Nepal	Kaini (1994)
	Calcutta-4	Nigeria	Khokher (2015)
	Poovan, Calcutta	Brazil	Khokher, 2015
	Malbhog	Nepal	Gotame et al. (2020)
Guava	Lucknow-49 and Alahabadi Safeda	Nepal	Kaini (1994)
Litchi	Early Seedless, Early Large Red, Late Large Red, Rose Scented, Raja Saheb, Dehraduni, China, Calcuttia, Patharia Red, Shahi, Bambai, Muzaffarpuri, Maclean, Seedless, Early Green, Koshelia, Rose Scented, Dehara Rose, Bombay Red, Bedana, Deharadun, Late Large, Phash, Ujali, Purbi, Deshi	Nepal	Kaini (1994); Bose (2001); Gautam et al. (2020)
	Bombai, Muzaffarpuri, Bedana and China Number Three	Bangladesh	Bose (2001)
Citrus	Citrus x paradisi 'Chakotra' Lour, Citrus jambhiri Lush. ev 'Jatti khatti', Citrus x reticulata 'Nagpuri santra	Pakistan	Shahzadi et al. (2016)
	Rangpur lime, Sour orange	Turkey	Cimen and Yesiloglu (2016); Yesiloglu et al. (2017)
Guava	Allahabadi, Allahabad Safeda, Chittidar, Chinese Guava, Lucknow-49, Lalguda, Seedless, KG-1	Nepal	Gotame et al. (2020)
Bael	Five accessions	Sri Lanka	Pathirana et al. (2020)
	Narendra Bael-5, Narendra Bael-7, Narendra Bael-9, Narendra Bael-17	Nepal	Gautam et al. 2020
Ber	Kaithal, Umran, Gola	Mali	Kalinganire et al. (2012)
	Banarasi, Gola, Umran, Jingzhao, Chuizhao	Nepal	Gotame et al. (2014)
Phalsa	Faizabadi	Nepal	Gotame et al. (2014)
Apricot	Blenheim Indian, Shakarpara, Tilton Indian,	Nepal	Gotame et al. (2014)
Aonla	Chakaiya, Kanchan NA-4, NA-6, NA-7, NA-10	Nepal	Gotame et al. (2014)
Jackfruit	Khajawa, Rasdar	Nepal	Gotame et al. (2014)

Table 12Mango varietiesreleased in other countriesutilising Indian germplasm

Sl. No.	Variety	Indian germplasm utilised	Releasing Insti- tute/country	Ref
1	Embrapa Roxa 141	Amrapali x Tommy Atkins	CARC, Brazil	Pinto et al. (2000)
2	Embrapa Alfa 142	Mallika x Van Dyke	CARC, Brazil	Pinto et al. (2000)
3	BRS Beta	Amrapali x Winter	CARC, Brazil	Pinto et al. (2000)
4	Embrapa Lita	Amrapali x Tommy Atkins	CARC, Brazil	Pinto et al. (2000)
5	BRS Omega	Amrapali x Tommy Atkins	CARC, Brazil	Pinto et al. (2000)
6	Bailey's Marvel	Haden x Bombay	Florida, USA	Schnell et al. (2006)
7	Anderson	Sandersha x Haden	Florida, USA	Schnell et al. (2006)
8	Haden-JIRCAS	Mulgoba x Turpentine	Florida, USA	Campbell (1992); Knight et al. (2009); Schnell et al. (2006)
9	Haden-OPARC	Mulgoba x Turpentine	Florida, USA	Campbell (1992); Knight et al. (2009); Schnell et al. (2006)
10	Jacquelin-OPARC	Haden x Bombay	Florida, USA	Schnell et al. (2006)
11	Jacquelin-JIRCAS	Haden x Bombay	Florida, USA	Schnell et al. (2006)

 Table 13 Diseases/ pests of fruit crops introduced in India from other countries

Sl. No	Disease/ pest	Scientific name	Host	Date of first record	Introduced from
1	Wooly apple aphid	Eriosoma lanigerum	Apple, pear	1909	England
2	San Jose scale	Quadraspidiotus perniciosus	Apple	1900	Italy
3	Downy mildew of grape	Plasmopora viticola	Grape	1910	Europe
4	Fluted scale	Icerya purchase	Citrus	1928	Sri Lanka
5	Crown gall	Agrobacterium tumefaciens	Apple, pear	1940	England
6	Hairy root of apple	Agrobacterium rhizogenes	Apple	1940	England
7	Bunchy top	Bunchy top of banana virus	Banana	1940	Sri Lanka
8	Fire blight of pear	Erwinia amylovora	Pear	1940	England
9	Apple canker	Sphaeropsis malorum	Apple	1943	Australia
10	Banana mosaic	Banana mosaic virus	Banana	1961	-
11	Apple scab	Venturia inequalis	Apple	1978	UK
12	Codling moth	Cydia pomonella	Apple	1989	Pakistan and Afghanistan
13	Banana bract and streak virus	Banana bract and streak virus	Banana	1995	Sri Lanka
14	Coconut eriophid mite	Aceria gurreronis Keifer	Coconut	1997	South America
15	Papaya Mealy bug	Paracoccus marginatus	Рарауа	2008	Central America
16	Banana mealy bug	Pseudococcus jackbeardsleyi Gimpel and Miller	Banana, papaya, custard apple	2012	Neotropical
17	Woolly whitefly	Aleurothrixus floccosus	Guava, Citrus species	2019	Neotropical
18	Neotropical white fly	Aleurotrachelus atratus	Cocos nucifera and Dypsis lutescens	2019	Neotropical

Source: Paroda et al., 1987; Khetrapal and Gupta 2007; Muniappan et al., 2008; Vijay Laxmi et al., 2014; Gupta et al., 2019; Shivakumara et al., 2020; Latha & Sathyanarayana, 2013; Khan et al., 2017; Singh et al., 2020

Glossary

ABS	Access and benefit sharing
-----	----------------------------

AICRP-F All India Coordinated Research Project-Fruits

- ANGRAU Acharya N. G. Ranga Agricultural University APEDA Agricultural and Processed Food Products Export Development Authority
- APGRC Agricultural Plant Genetic Resources Conservation and Research Centre
- ATARI Agricultural Technology Application Research Institute
- BARCBangladesh Agricultural Research CouncilBDABiological Diversity Act
- BSIP Birbal Sahni Institute of Palaeobotany
- CARC Cerrados Agricultural Research Center
- CBD Convention on Biological Diversity
- CCRI Central Citrus Research Institute
- CePaCT Centre for Pacific Crops and Trees
- CES Citrus Experiment Station
- CIAH Central Institute of Arid Horticulture
- CISH Central Institute of Sub-tropical Horticulture
- CITH Central Institute of Temperate Horticultural
- CWR Crop Wild Relatives
- EMBRAPA-CNPMF Embrapa Mandioca e Fruticultura Tropical
- EMLA East Malling Long Ashton
- EURISCO European Search Catalogue for Plant Genetic Resources
- EXIM Export and Import Policy
- FAO Food and Agriculture Organization
- FIGS Focussed Identification of Germplasm Strategy
- FRS Fruit Research Station
- GDP Gross Domestic Product
- GEPU Germplasm Exchange & Policy Unit
- GFG German Fruit Genebank
- GRIN Germplasm Resources Information Network
- HAU Haryana Agricultural University
- HETC Horticultural Experiment and Training Centre
- IARC International Agricultural Research Centres
- IARI Indian Agricultural Research Institute
- ICAR Indian Council of Agricultural Research
- IIHR Indian Institute of Horticultural Research
- IITA International Institute of Tropical Agriculture
- IMTP International Musa Testing Programme
- INIBAP International Network for Improvement of Banana and Plantains
- IPPC International Plant Protection Convention
- ITC International Musa Germplasm Transit Center
- ITPGRFA International Treaty on Plant Genetic Resources for Food and Agriculture
- KVK Krishi Vigyan Kendra
- MoAFW Ministry of Agriculture & Farmers Welfare
- MTA Material Transfer Agreement

NARO	National Agricultural Research Organisation
NBPGR	National Bureau of Plant Genetic Resources
NHB	National Horticulture Board
NP	Nagoya Protocol on Access to Genetic Resources
	and the Fair and Equitable Sharing of Benefits
	arising from their Utilisation
NPGS	The US National Plant Germplasm System
NRC	National Research Centre
NRCB	National Research Centre for Banana
NRCG	National Research Centre on Grape
NRCL	National Research Centre on Litchi
NRCP	National Research Centre on Pomegranate
PAU	Punjab Agriculture University
PGRFA	Plant Genetic Resources for Food and Agriculture
RAAS	Russian Academy of Agricultural Sciences
RFRC	Regional Fruit Research Centre
RC-Tripu	ra Regional Centre, Tripura
SKUAST	(K) Sher-e-Kashmir University of Agricultural
	Sciences and Technology, Kashmir
SMTA	Standard Material Transfer Agreement
TNAU	Tamil Nadu Agricultural University
USDA	United States Department of Agriculture
YSPUH&	F Dr. Yashwant Singh Parmar University of
	Horticulture and Forestry
WTO	World Trade Organization

WTO World Trade Organisation

Acknowledgements The authors would like to express their gratitude to the Director(s) and all staff at ICAR-NBPGR and its partner institutions for their contributions to the global exchange of PGR and for providing the data used in this study. The authors also thank all of the scientists and experts with whom they spoke for their insights, opinions, and information. The authors would like to thank Dr. Kavita Gupta for her valuable inputs and Mr Satyendra Singh for his help in the layout of the graph during manuscript preparation. Ms Shuchi and Ms Manjeet are also thanked for their assistance in typing the manuscript. Authors are grateful to Dr Serge Savary, Editor-in Chief for his valuable suggestions and meticulous editing for improving the manuscript.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

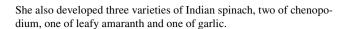
References

- Ahmed, N., & Verma, M. K. (2009). Scientific Almond cultivation for higher returns, Central Institute of Temperate Horticulture, Srinagar, J&K.
- Amin, M., & Hanif M. (2002). Cultivation of mango in Dera Ismail Khan. Agricultural Research Institute, Ratta, D.I. Khan, Pakistan, 1–18.
- Anonymous. (1995). Annual Report of the National Bureau of Plant Genetic Resources 1995-96, NBPGR, Pusa Campus, New Delhi, India, 156.
- Anonymous. (1996). Annual Report of the National Bureau of Plant Genetic Resources 1996-97, NBPGR, Pusa Campus, New Delhi, India, 168.

- Anonymous. (2000). Annual Report of the National Bureau of Plant Genetic Resources 2000, NBPGR, Pusa Campus, New Delhi, India, 154.
- Anonymous. (2001). Annual Report of the National Bureau of Plant Genetic Resources 2001, NBPGR, Pusa Campus, New Delhi, India, 144.
- Anonymous. (2002). Annual Report of the National Bureau of Plant Genetic Resources 2002, NBPGR, Pusa Campus, New Delhi, India, 154.
- Anonymous. (2003). Annual Report of the National Bureau of Plant Genetic Resources 2003, NBPGR, Pusa Campus, New Delhi, India, 165.
- Anonymous. (2004). Annual Report of the National Bureau of Plant Genetic Resources 2004, NBPGR, Pusa Campus, New Delhi, India, 173.
- Anonymous. (2005). Annual Report of the National Bureau of Plant Genetic Resources 2005–2006, NBPGR, Pusa Campus, New Delhi, India, 148.
- Anonymous. (2007). Annual Report of the National Bureau of Plant Genetic Resources 2006–2007, NBPGR, Pusa Campus, New Delhi, India, 154.
- Anonymous. (2009). Annual Report of the National Bureau of Plant Genetic Resources 2008–2009, NBPGR, Pusa Campus, New Delhi, India, 171.
- Anonymous. (2010). Annual Report of the National Bureau of Plant Genetic Resources 2010–2011, NBPGR, Pusa Campus, New Delhi, India, 200+vi.
- Anonymous. (2012). Annual Report of the National Bureau of Plant Genetic Resources 2011–2012, NBPGR, Pusa Campus, New Delhi, India, 204.
- Anonymous. (2015). Annual Report of the ICAR-National Bureau of Plant Genetic Resources 2014–2015, ICAR-NBPGR, Pusa Campus, New Delhi, India, 210+x.
- Anonymous. (2017). Annual Report of the ICAR-National Bureau of Plant Genetic Resources 2016–17, NBPGR, Pusa Campus, New Delhi, India, 211 + x.
- Anonymous. (2018a). Annual Report 2017–2018, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India, 181.
- Anonymous. (2018b). Horticultural Statistics at a Glance 2018. Horticulture Statistics Division, Department of Agriculture, Cooperation & Farmers Welfare, Ministry of Agriculture & Farmers Welfare, Government of India. 458.
- Anonymous. (2019). Annual Report of the National Bureau of Plant Genetic Resources 1997, NBPGR, Pusa Campus, New Delhi, India, 230.
- Anonymous. (2020). Annual Report 2019, ICAR- National Bureau of Plant Genetic Resources, New Delhi, India, 236.
- APEDA. (2020). www.agriexchange.apeda.gov.in/product_profile/ exp_f_india.aspx?categorycode=0205. Accessed June 5 2020.
- Arivalagan, M., Sriram, S., & Karunakaran, G. (2019). Dragon fruit country report from India. FFTC Agricultural Policy Platform, FFTC-AP, Food and Fertilizer Technology for the Asian and Pacific Region.
- Baskar, M., Hemalatha, G., & Muneeshwari, P. (2020). Traditional and Medicinal Importance of Sapota – Review. *International Journal* of Current Microbiology and Applied Sciences, 9(1), 1711–1717.
- Blatter, E. (1926). *The palms of British India and Ceylon*. Oxford University Press.
- Bose, T. K. (2001). Fruit: Tropical and Subtropical, 1, Naya Yug, Kolkata, India.
- Bose, T. K., Mitra, S. K., & Sanyal, D. (2001). *Fruits: Tropical and Subtropical*, 2. Naya Udyog.

- Burke, M. B., Lobell, D. B., & Guarino, L. (2009). Shifts in African crop climates by 2050 and the implications for crop improvement and genetic resources conservation. *Global Environment Change*, 19, 317–325.
- Campbell, R. J. (1992). A Guide to Mangos in Florida. Fairchild Tropical Garden.
- CastañedaÁlvarez, N. P., Khoury, C. K., Achicanoy, H. A., Bernau, V., Dempewolf, H., Eastwood, R. J., et al. (2016). Global conservation priorities for crop wild relatives. *Nature Plants*, 2, 16022. https://doi.org/10.1038/nplants.2016.22
- Chadha, K. L., & Pareek, O. P. (1993). Fruit research in India-History, Infrastructure and achievements. In K. L. Chadha, & O.P. Pareek (Eds.) Advances in Horticulture Fruit Crops, 1, 1–30. Malhotra Publishing House, New Delhi 110064, India.
- Chadha, K. L., & Patel, V. B. (2005). Plant Introduction- Achievements and opportunities in fruit and plantation crops in South Asia. *Indian Journal of Plant Genetic Resources*, 18(1), 18–19.
- Chaudhary, J. N., Pandey, Y. R., Gautam, I. P., & Basnet, R. B. (2012). Identification of suitable papaya genotypes for commercial cultivation in Nepal. Proceedings of the Fourth SAS-N Convention, 4–6 April 2012. Society of Agricultural Scientist- Nepal, (SASN), Khumaltar, Lalitpur.
- Cimen, B., & Yesiloglu, T. (2016). Rootstock Breeding for Abiotic Stress Tolerance in Citrus. In A. K. Shanker & S. Chitra (Eds.), *Abiotic and Biotic Stress in Plants - Recent Advances and Future Perspectives*, 521–563. InTech publisher.
- Collingham, L. (2007). Curry: A Tale of Cooks and Conquerors. Oxford University Press. ISBN 978-0-19-532001-5.
- Cooke, T. (1908). The flora of the presidency of Bombay. Taylor & Francis.
- Crop Trust. (2020). Crop wild relatives. *Crop Trust*. https://croptrust. org/our-work/supporting-crop-conservation/crop-wild-relatives. Accessed 6 October 2020.
- Crosby, A. (1972). *The Columbian exchange: Biological and cultural consequences of 1492*. Greenwood Publishing.
- Crosby, A. (1986). Ecological imperialism: The biological expansion of Europe, 900–1900. Cambridge University Press.
- Diamond, J. (1997). *Guns, germs and steel: The fate of human societies.* Norton & Co.
- Diengngan, S., & Hasan, M. A. (2015). Genetic diversity of underutilized fruits in India for environmental sustainability. Advances in Plants & Agricultural Research, 2(7), 299–303. https://doi.org/ 10.15406/apar.2015.02.00076
- Dinesh, M. R. & Vasugi, C. (2010). Guava improvement in India and future needs. *Journal of Horticultural Science*, *5*, 94–108.
- Dutt, S. (2016). Heralding towards golden revolution. *Indian Horticulture*, 61(6), 47–51.
- FAO. (2010). The Second Report on the State of the World's Plant Genetic Resources. Rome, Italy: FAO, 370.
- Fowler, C., Smale, M., & Gaiji, S. (2001). Unequal exchange? Recent transfers of agricultural resources and their implications for developing countries. *Developmental Policy Reviews*, 19, 181–204.
- Fujisaka, S., Williams, D., & Halewood, M. (2011). The impact of climate change on countries' interdependence on genetic resources for food and agriculture. Background Paper No. 48. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).
- Galluzzi, G., Halewood, M., Noriega, I. L., et al. (2016). Twenty-five years of international exchanges of plant genetic resources facilitated by the CGIAR genebanks: A case study on global interdependence. *Biodiversity Conservation*, 25, 1421–1446. https://doi. org/10.1007/s10531-016-1109-7
- Gautam, P. L., Sharma, G. D., Srivastava, U., Singh, B. B., Kumar, A., Saxena, R. K., & Srinivasan, K. (Eds). (2000). 20 glorious years of NBPGR (1976–1996). *National Bureau of Plant Genetic Resources*, New Delhi. 333.

- Gautam, I., & Gotame, T. (2020). Diversity of native and exotic fruit genetic resources in Nepal. *Journal of Nepal Agricultural Research Council*. https://doi.org/10.3126/jnarc.v6i0.28114
- Ghimiray, M., & Vernooy, R. (2017). The importance and challenges of crop germplasm interdependence: The case of Bhutan. *Food Security*, 9(2), 301–310.
- Ghosh, S. P. (2012). Deciduous fruit production in India. http://fao. org/3/ab985e/ab985e07.htm. Accessed 5 July 2020.
- Gill, S. M., Mahindra K. (2010). Package of practices for cultivation of fruits. Horticulture officers' workshop report, Punjab Agricultural University, Ludhiana; India.
- Gotame, T. P., Paudyal, K. P., & Khatiwada, P. P. (2014). Status of fruit and nut genetic resources in Nepal, indigenous and exotic varietal inventory. *Horticulture Research Division*, Nepal Agricultural Research Council, Khumaltar, Lalitpur. NARC Publication Serial No. 0090–12 (2013/14).
- Gotame, T. P., Gautam, I. P., Shrestha, S. L., Shrestha, J., & Joshi, B. K. (2020). Advances in fruit breeding in Nepal. *Journal of Agriculture* and Natural Resources. https://doi.org/10.3126/janr.v3i1.27183
- Goto, Y. B. (1960). Lychee and its processing. Pacific Region Food Conference, 1, 15–23.
- Gupta, N., Verma, S. C., Sharma, P. L., Thakur, M., Sharma, P., & Devi, D. (2019). Status of invasive insect pests of India and their natural enemies. *Journal of Entomology and Zoology Studies*, 7(1), 482–489.
- Halewood, M., Baidu-Forson, J. J., Clancy, E., & Vodouhe, R. S. (2014). Cooperating to make the best use of plant genetic resources in West and Central Africa: A regional imperative. Italy and Dakar, Senegal.
- Hellin, J., & Higman, S. (2009). Underutilized plant products and market access: Challenges and opportunities. *Acta Horticulturae*, 806, 393–406.
- Hutchinson, J. (Ed.). (1974). Evolutionary studies in world crops. Diversity and crop changes in the Indian subcontinent. Cambridge University Press. 171.
- ICAR-ATARI, Ludhiana. (2019). Coloured strains of apple for enhancing income in mid-hills under climate change scenario. https:// icar.org.in/content/ Accessed 5 June 2020.
- Jarvis, A., Upadhyaya, H., Gowda, C. L. L., et al. (2010). Climate change and its effect on conservation and use of plant genetic resources for food and agriculture and associated biodiversity for food security. In: Second state of the world plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome, Italy, 26.
- Jefferson, T. (1800). Memorandum of services, unpublished manuscript, c. September, 1800, Library of Congress, Washington, DC (DLC, reel 22).
- Kaini, B. R. (1994). Status of fruit plant genetic resources in Nepal. In M. P. Upadhya, H. K. Saiju, B. K Baniya, &, M. S Bista (Eds.), *Plant Genetic Resources, Nepalese Perspectives.* Proceeding of the national workshop on plant genetic resource conservation, use and management organized by NARC at Kathmandu 28 Nov-1 Dec, 1994. NARC and IPGRI. 103.
- Kalinganire, A., Weber, J., & Coulibaly, S. (2012). Improved Ziziphus mauritiana germplasm for Sahelian smallholder farmers: First steps toward a domestication programme. Forests Trees and Livelihoods, 21, 128–137. https://doi.org/10.1080/14728028. 2012.715474
- Kalinganire, A., Weber, J. C., Uwamariya, A., & Kone, B. (2008). Improving rural livelihoods through domestication of indigenous fruit trees in parklands of the Sahel. In F. K. Akinnifesi, R. B. B. Leakey, C. Oluyede, O. C. Ajayi, G. Sileshi, Z. Tchoundjeu, P. Matakala, & F. R. Kwesiga (Eds.), *Indigenous Fruit Trees in the Tropics: Domestication, Utilisation and Commercialisation*. CAB International Publishing, 186–203.


- Khan, H. H., Verma, S. S., Saleem, M., Verma, S. K., Usmani, T. A., Naz, H., & Naz, A. (2017). Role of history of Plant Quarantine in India- A review. *International Journal of Chemical Studies*, 5(6), 2034–2037.
- Khazaei, H., Street, K., Bari, A., Mackay, M., & Stoddard, F. (2013). The FIGS Focused Identification of Germplasm Strategy (FIGS) approach identifies traits related to drought adaptation in *Vicia faba* genetic resources. *PLoS One*, 8, e63107. https://doi.org/10. 1371/journal.pone.0063107
- Khetarpal, R., & Gupta, K. (2007). Plant biosecurity in India Status and strategy. Asian Biotechnology and Development Reviews, 9, 83–107.
- Khokher, A. K. (2015). Conventional breeding approaches for postharvest quality improvement of fruits. In M. W. Siddiqui (Ed.), *Postharvest Biology and Technology of Horticultural Crops: Principles and Practices for Quality Maintenance*. Apple Academic Press Inc. 89–140.
- Khoury, C. K., Bjorkman, A. D., Dempewolf, H., et al. (2014). Increasing homogeneity in global food supplies and the implications for food security. *Proceedings of National Academy of Science, USA*. https://doi.org/10.1073/pnas.1313490111
- Knight, R. J., Campbell, R. J., & Maguire, I. (2009). Important mango cultivars and their descriptors. *The Mango, 2nd Edition: Botany, Production and Uses*, 42–66. https://doi.org/10. 1079/9781845934897.0042
- Knight, R. J. (1980). Origin and world importance of Tropical and Subtropical fruit crops. In)Tropical and Sub-tropical Fruits : Composition, Properties and Uses. S. Nagy and P.E. Show (Editors), AVI Publishing, Westport, Connecticut, 1–120.
- Kone, B., Kalinganire, A., & Doumbia, M. (2009). La culture du jujubier: un manuel pour l'horticulteur sahe lien [Growing ber: a manual for the Sahelian horticulturist]. Nairobi (Kenya): World Agroforestry Centre, Manuel Technique, (10).
- Krishnamurthi, S. (1953). Horticultural and Economic plants of the Nilgiris. Annamalai University, India.
- Lane, A., & Jarvis, A. (2007). Changes in climate will modify the geography of crop suitability: agricultural biodiversity can help with adaptation. http://ejournal.icrisat.org/SpecialProject/sp2.pdf
- Latha, S., & Sathyanarayana, N. (2013). An overview of the status and the potential impact of the exotic pathogens on Indian horticulture. *Pest Management in Horticultural Ecosystems*, 18, 88–93.
- Liang, J. (1981). The Litchi, origin. Utilization and Development of Its Culture, Journal of Agriculture Trinidad Botany Applied, 28, 259–270.
- Luby, C. H., Kloppenburg, J., Michaels, T. M., & Goldman, L. L. (2015). Enhancing freedom to operate for plant breeders and farmers through open source plant breeding. *Crop Science*, 55(3), 2481–2488.
- Mann, C. C. (2011). 1493: Uncovering the new world Columbus created. Knopf.
- Mehta, I. (2017). History of mango-King of fruits. *International Journal of Engineering Science*, 6(7), 20–24.
- Mehrotra, R., Dicher, D. L., & Awasthi, N. (1998). A palaeogene Mangifera - Like leaf fossil from India. *Phytomorphology: An International Journal of Plant Morphology*, 48(1), 91–100.
- Mitra, S. K., Pathak, P. K., & Chakraborty, I. (2010). Potential underutilized tropical fruits of India. Acta Horticulturae, 864, 61–67.
- Mitra, S. K., & Dinesh, M. R. (2019). Papaya breeding in India achievements and future thrust. Acta Horticulturae. https://doi. org/10.17660/ActaHortic.2019.1250.4
- Morton, J. (1987). Pomegranate. In J. F. Morton (Ed.), *Fruits of warm climates*, 352–355. Miami.
- Muniappan, R., Shepard, B. M., Watson, G. W., Carner, G. R., Sartiami, D., Rauf, A., & Hammig, M. D. (2008). First report of the papaya mealybug, *Paracoccus marginatus* (Hemiptera: Pseudococcidae),

in Indonesia and India. Journal of Agricultural and Urban Entomology, 25, 37–40.

- Nafees, M., Ahmad, S., Anwar, R., Ahmad, I., & Maryyam, & Hussnain, R. R. (2013). Improved horticultural practices against leaf wilting, root rot and nutrient uptake in mango (*Mangifera indica* L). *Paki*stan Journal of Agricultural Sciences, 50, 393–398.
- Nath, V., Gupta, A. K., Marboh, E. S., Srivastava, K., & Kumar, V. (2018). Gandaki Longan -1- First longan variety. *Indian Horticulture*, 63(1), 3–4.
- Olmo, H. P. (1976). Grapes. In T. K. Bose (ed.). *Fruits of India: tropical and subtropical*, Naya Prokash, Calcutta, India.
- Pandey, G., & Tripathi, A. N. (2014). Kiwifruit A boon for Arunachal Pradesh, Programme Coordinator, Krishi Vigyan Kendra, Yachuli (Indian Council of Agricultural Research), Govt. of Arunachal Pradesh, Lower Subansiri District-791120 (Arunachal Pradesh). pp. 17.
- Paroda, R. S., Mathur, V. K., & Chandel, K. P. S. (1987). Use of tissue culture in plant quarantine for exchange of germplasm and planting materials in India. FAO Expert Consultation Use of Tissue Culture in Plant Quarantine for Exchange of Planting Materials, New Delhi, 26 February-2 March 1987.
- Pathirana, C. K., Ranaweera, L. T., Madhujith, T., Ketipearachchi, K. W., Gamlath, K. L., Eeswara, J. P., et al. (2020). Assessment of the elite accessions of bael [*Aegle marmelos* (L.) Corr.] in Sri Lanka based on morphometric, organoleptic, and elemental properties of the fruits and phylogenetic relationships. *PLoS One*, 15(5), e0233609. https://doi.org/10.1371/journal.pone.0233609
- Pinto, A. C. Q., Andrade, S. R. M., & Venturoli, S. (2004). Fruit set success of three mango cultivars using reciprocal crosses. *Acta Horticulturae*, 645, 299–301.
- Pinto, A. C. D., Vargas Ramos, V. H., & Junquueira, N. T. V. (2000). New varieties and hybrid selections from mango hybridization program in central region of Brazil. *Acta Horticulturae*. https:// doi.org/10.17660/ActaHortic.2000.509.20
- Pradhan, K. (2010). Macadamia Nutritious nut food. Science Reporter, 44–45.
- Rajan, S., & Hudedamani, U. (2019). Genetic resources of mango: status, threats, and future prospects. In P. E. Rajasekharan, & V. R. Rao (Eds.). *Conservation and Utilisation of Horticultural Genetic Resources*, 217–249. Springer Nature. https://doi.org/10. 1007/978-981-13-3669-0-1
- Rajput, C. B. S. (1985). Custard apple. In T. K. Bose (Ed.), Fruits of India, Tropical and Subtropical, 479–486. Naya Prokash.
- Ramirez-Villegas, J., Jarvis, A., Fujisaka, S., et al. (2013). Crop and forage genetic resources: international interdependence in the face of climate change. In: M. Halewood, I. Lo´pez Noriega, S. Louafi (Eds). Crop Genetic Resources as a Global Commons: Challenges in International Law and Governance, 78–98. Earthscan, London.
- Randhawa, M. S. (1982). A history of agriculture in India. *Indian Council of Agricultural Research, I-IV*. New Delhi.
- Reynolds, P. K. (1951). Earliest evidence of banana culture. Journal of American Ornamental Society, 71 Supplement.
- Riaz, R., Khan, A. S., Ziaf, K., & Cheema, H. (2018). Genetic diversity of wild and cultivated mango genotypes of Pakistan using SSR markers. *Pakistan Journal of Agricultural Sciences*. https://doi. org/10.21162/PAKJAS/18.6360
- Schnell, R. J., Brown, J. S., Olano, C. T., Meerow, A., Campbell, R. J., & Kuhn, D. N. (2006). Mango genetic diversity analysis and pedigree inferences for Florida cultivars using microsatellite markers. *Journal of the American Society for Horticultural Science*, 131. https://doi.org/10.21273/JASHS.131.2.214
- SGRP. (2011). CGIAR Centers' Experience with the Implementation of Their Agreements with the Treaty's Governing Body, with Particular Reference to the Use of the SMTA for Annex 1 and Non-Annex 1 Materials.

- Shah, J. (2014). Date palm cultivation in India: An overview of activities. *Emirates Journal of Food and Agriculture*. https://doi.org/ 10.9755/ejfa.v26i11.18986
- Shahzadi, K., Naz, S., & Ilyas, S. (2016). Genetic diversity of citrus germplasm in Pakistan based on Random Amplified Polymorphic DNA (RAPD) markers. *The Journal of Animal & Plant Sciences*, 26(4), 1094–1100.
- Sharma, S. D., Kumar, K., Gupta, S., Rana, J. C., Sharma, B. D., & Rathore, D. S. (2005). Temperate Fruits. In B. S. Dhillon, R. K. Tyagi, S. Saxena, & G. J. Randhawa (Eds.), *Plant Genetic Resources: Horticultural Crops*, 146–167. Narosa Publishing House Pvt Ltd.
- Sherman, A., Rubinstein, M., Eshed, R., et al. (2015). Mango (Mangifera indica L.) germplasm diversity based on single nucleotide polymorphisms derived from the transcriptome. BMC Plant Biology, https://doi.org/10.1186/s12870-015-0663-6
- Shivakumara, K. T., Joshi, S., Venkatesan, T., Pradeeksha, N., Polaiah, A., & Manivel, P. (2020). A Report on the occurrence of invasive papaya mealybug, *Paracoccus marginatus* Williams & Granara de Willink (Hemiptera: Pseudococcidae) on a medicinal herb, *Gymnema sylvestre* (R.Br) in Gujarat, India.
- Shivani, Thakur, B. K., Mallikarjun, C. P., Mahajan, M., Kapoor, P., Malhotra, J., Dhiman, R., Kumar, D., Pal, P. K., & Kumar S. (2021). Introduction, adaptation and characterization of monk fruit (*Siraitia grosvenorii*): a non-caloric new natural sweetener. *Scientific Reports*, 18;11(1), 6205. https://doi.org/10.1038/ s41598-021-85689-2. PMID: 33737610; PMCID: PMC7973523.
- Siddiqui, M. D., Wasim, Y., & S. K., Dhua R.S., & Ahmad, M. S. (2014). Ensuring food security through golden revolution: Prospects, achievements and bottlenecks. *International Food Research Journal*, 21(4), 1271–1277.
- Simmonds, N. W. (1993). Introgression and incorporation. Strate-gies for the use of crop genetic resources. *Biological Reviews*, 68, 539–562.
- Singh, A. K., Srinivasan, K., Saxena, S., & Dhillon, B. S. (2006). Hundred years of plant genetic resources management in India. *National Bureau of Plant Genetic Resources*, Pusa Campus, New Delhi, India.
- Singh, H. P., Parthasarathy, V. A., & Prasath, D. (2009). Horticultural Crops-Varietal wealth (563). Studium Press (India) Pvt Ltd.
- Singh, I. P., & Sharma, C. K. (1996). HPSC-3: A high yielding papaya hybrid for Tripura. *Journal of Hill Research*, 90(1), 73–75.
- Singh, R. (1969). Fruits. National Book Trust.
- Singh, S., Sharma, J. H., Udikeri, A., & Ansari, H. (2020). Invasive Insects in India, Invasive Species - Introduction Pathways, Economic Impact, and Possible Management Options, Hamadttu El-Shafie, IntechOpen. https://doi.org/10.5772/intechopen.91986. Available from: https://www.intechopen.com/books/invasivespecies-introduction-pathways-economic-impact-and-possiblemanagement-options/invasive-insects-in-india
- Singh, B. P., & Rana, R. S. (1993). Promising fruit introductions. In K.L. Chadha & O.P. Pareek (Eds), Advances in Horticulture, *1*, 43–66. Fruit crops Part 1, Malhotra Publishing House, New Delhi.
- Swamy, P. S. D. (1967). Avocado culture in India. California Avocado Society.
- Thakur, B. S., & Kashyap, A. S. (2005). Present status, problems and prospects of persimmon cultivation in India. *Acta Horticulturae*, 685, 45–48. https://doi.org/10.17660/ActaHortic.2005.685.4
- Tripathi, P. C., Karunakaran, G., Sakthivel, T., Sankar, V., & Kumar, S. R. (2020). Status and prospects of rambutan cultivation in India. *Acta Horticulturae*, 1293, 33–40. https://doi.org/10.17660/ActaHortic. 2020.1293.5
- Tripathi, P. C. (2018). Passion Fruit. In K. V. Peter (Ed.), *Horticultural Crops of high nutraceutical values* (pp. 245–270). Brillion Publishing New Delhi.

- Tripathi, P. C., Karunakaran, G. Sankar, V., & Knupriya. (2019). Genetic Resources of wild and underutilized fruits in Western Ghats. In K.L. Chadha, S.K. Singh., Jai Prakash and V.B. Patel (Eds.). Shaping the Future of Horticulture, 143–158. Kruger Brentt Publishers U.K. ISBN 978–1–78715–033–1.
- Vats, M. S. (1940). Excavations at Harappa: being an account of Archaeological Excavations carried out at Harappa between the years 1920–1 and 1933–4. By. Delhi (Manager of Publications), pp. xv, 488 and 139 plates.
- Vavilov, N. I. (1926). The Origin. Variation, Immunity and Breeding of Cultivated Plants Chronica Botanica., 13(6), 1949–1950.
- Verma, V. D., Pradheep, K., & Rana, J. C., et al. (2006). Some potential minor temperate fruit crops in the North-West Himalaya. In D. K. Kishore (Ed.), *Temperate Horticulture: Current scenario*, 57–67. New India Publishing Agency.
- Verkataratanam, L., & Satyanaranaswamy, G. (1956). Studies on genetic variability in Annona squamosa. Indian Journal of Horticulture, 15, 228–238.
- Vijay Laxmi, R., Geetanjaly, & Sharma, P. (2014). Plant quarantine: An effective strategy of pest management in India. *Research Journal* of Agriculture and Forestry Sciences, 2(1), 11–16.
- Warschefsky Emily, J., & von Wettberg Eric, J. B. (2019). Population genomic analysis of mango (*Mangifera indica*) suggests a complex history of domestication. *New Phytologist*, 222, 2023–2037.
- Yamanaka, S., Hosaka, F., Matsumura, M., Onoue-Makishi, Y., Nashima, K., Urasaki, N., Ogata, T., Shoda, M., Yamamoto, T. (2019). Genetic diversity and relatedness of mango cultivars assessed by SSR markers. *Breeding Science*, 69. https://doi.org/ 10.1270/jsbbs.18204
- Yeşiloğlu, T., Yılmaz, B., İncesu, M., & Çimen, B. (2017). The Turkish Citrus Industry. Chronica Horticulturae, 57(4), 17–22.
- Zich, F. A., Hyland, B. P. M., Whiffen, T., & Kerrigan, R. A. (2020). "Syzygium malaccense". Australian Tropical Rainforest Plants, (8th ed.). Commonwealth Scientific and Industrial Research Organisation (CSIRO).

Dr Pratibha Brahmi Principal Scientist, looking after Germplasm Exchange, Policy and IPR issues at ICAR-NBPGR and involved in management of import and export of germplasm of various crops. At the international level, she provided inputs in developing guidelines for exchange of germplasm under the ITPGRFA. She is also involved at the national level in the development of procedures for filing plant variety protection applications. Her contributions include technical inputs and the develop-

ment of country positions for negotiations at various International meetings concerning genetic resources. Currently leading a project on exchange of stress tolerant legume crops with ten African countries.

Dr Vandana Tyagi is working as Principal Scientist in Germplasm Exchange and Policy Unit, has facilitated introduction of trait specific germplasm of agrihorticultural crops. She has over 24 years of experience in Plant Genetic Resources Policy. She has organised training programmes in germplasm exchange issues; regulations and policies for access to plant genetic resources. She was a visiting fac-

ulty at Cornell University, Ithaca, NY, USA as Fulbright Hubert H Humphrey Fellow during 2007-2008.

Dr J K Ranjan is working as a Principal Scientist at Division of Vegetable Science at ICAR-Indian Agricultural Research Insititute (IARI) New Delhi. His research interest includes management and improvement of various horticultural crops including bottle gourd, chilli, capsicum, leafy vegetables and garlic. He has developed two varieties of garlic, one of apple and two of Indian spinach. He was a visiting scholar at Clemson University, South Carolina (USA) during 2012.

Dr Pragya is a Horticulturist with over fifteen years of experience in management of vegetable and ornamental crop germplasm. Her research interest includes improvement of vegetable crops especially cucurbits and leafy vegetables. She currently works as Principal Scientist at Germplasm Exchange & Policy Unit at Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources (NBPGR), New Delhi

and involved in management and exchange of horticultural crop germplasm in India. She identified carotenoid-rich germplasm in cucumber and registered two unique germplasm for use in breeding programmes.

Dr Vartika Srivastava is a fruit scientist currently working on development of protocols for long-term conservation of nonorthodox seed species and underutilized fruit crops for PGR management at Tissue Culture and Cryopreservation Unit, ICAR-NBPGR, New Delhi. She has over 9 years of experience in research and teaching. She developed in vitro protocols for shoot multiplication and slow growth and elucidated the effect of mycorrhizal inoculation during hardening. She is now developing

ening. She is now developing storage protocols for recalcitrant seeds of underutilized fruits of India like Syzygium cumini, Garcinia indica, Prunus nepaulensis etc.

Dr. Satish Kumar Yadav is working as Principal Scientist (Horticulture) at ICAR-NBPGR with 22 years of experience. He collected 3790 accessions in 45 multi-crop explorations. He has been involved in Characterization and Evaluation of PGR in vegetable crops, particularly tomato, brinjal, bottle gourd, sponge gourd and ridge gourd. He developed core set of 181 accessions in brinjal. Presently he is involved in exchange of PGR in Vegetable Crops, Plantation Crops, Bulbous crops, Tuber crops etc. he has registered seven

genetic stocks in brinjal, tomato, chilli, pea and buckwheat for novel traits. Dr. Yadav is Fellow of Indian Society of Seed Technology and Indian Society of Vegetable Science.

Mr Satya Pal Singh is working as Chief Technical Officer, Germplasm Exchange and Policy Unit at NBPGR New Delhi. Since last 35 years, he is involved in germplasm exchange activities at NBPGR. He is facilitating issuance of Import Permits for international exchange of germplasm and managing database.

Mr Surender Singh is working as Chief Technical Officer, Germplasm Exchange and Policy Unit at NBPGR New Delhi. Over 31 years of experience, assisting germplasm exchange activities at NBPGR. He is involved in documentation and release of consignments from customs and its distribution to the indenters. His field of specialization includes Ecology and Environment and Germplasm Exchange.

Mr P C Binda is working as Technical Officer, Germplasm Exchange and Policy Unit at NBPGR New Delhi. Since last 33 years, he is involved in documentation of the imported consignment and accessioning and management of database at NBPGR.

Dr Saniav Kumar Singh basi-

cally a Fruit breeder, is the head

of Division of Fruits and Horti-

cultural Technology, ICAR-IARI, New Delhi. His research interest includes micropropagation and bio-hardening and *in vitro* breeding in fruit crops. He has identified and released four promising hybrids in seedless grape and two varieties in mango. He did his Post Doc under DBT Overseas Fellowship at University of Florida, USA.

He is the Fellow of National Academy of Agricultural Science and is a recipient of Hari Om Ashram Trust Award of ICAR.

Dr Kuldeep Singh basically a plant breeder, is the Director of ICAR-NBPGR, New Delhi. During his Post-Doctoral research at the International Rice Research Institute (IRRI), Philippines, with the World Food Laureate, Dr. G.S. Khush, a complete series of secondary trisomics in rice was developed and used for mapping centromere positions in

the classical and molecular linkage maps of rice. He also worked at the School of Agricultural Biotechnology, PAU, Ludhiana and was involved in wide hybridization (wheat and rice, using wild varieties), gene identification and mapping. He has identified 12 new genes in rice and wheat for resistance to diseases, insects, nutritional and productivity traits. He was involved in developing three varieties of wheat and eleven of rice with Punjab Basmati 1 being the first MAS based bacterial blight resistant variety. He has received SciGenom Research Foundation Excellence in Science award - 2018 and The Borlaug Global Rust Initiative Gene Stewardship Award - 2018.