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Germplasm should be conserved in such a way that the genetic integrity of a given

accession is maintained. In most genebanks, landraces constitute a major portion of

collections, wherein the extent of genetic diversity within and among landraces of crops

vary depending on the extent of outcrossing and selection intensity infused by farmers.

In this study, we assessed the level of diversity within and among 108 diverse landraces

and wild accessions using both phenotypic and genotypic characterization. This included

36 accessions in each of sorghum, pearl millet, and pigeonpea, conserved at ICRISAT

genebank. We genotyped about 15 to 25 individuals within each accession, totaling

1,980 individuals using the DArTSeq approach. This resulted in 45,249, 19,052, and

8,211 high-quality single nucleotide polymorphisms (SNPs) in pearl millet, sorghum,

and pigeonpea, respectively. Sorghum had the lowest average phenotypic (0.090) and

genotypic (0.135) within accession distances, while pearl millet had the highest average

phenotypic (0.227) and genotypic (0.245) distances. Pigeonpea had an average of

0.203 phenotypic and 0.168 genotypic within accession distances. Analysis of molecular

variance also confirms the lowest variability within accessions of sorghum (26.3%)

and the highest of 80.2% in pearl millet, while an intermediate in pigeonpea (57.0%).

The effective sample size required to capture maximum variability and to retain rare

alleles while regeneration ranged from 47 to 101 for sorghum, 155 to 203 for pearl

millet, and 77 to 89 for pigeonpea accessions. This study will support genebank

curators, in understanding the dynamics of population within and among accessions,

in devising appropriate germplasm conservation strategies, and aid in their utilization for

crop improvement.

Keywords: DArTseq, within accession diversity, effective population size, landraces, pearl millet, pigeonpea,

regeneration, sorghum
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FIGURE 8 | (A) Average heterozygosity within accessions for each 36 accessions of sorghum, pigeonpea, and pearl millet estimated from DArTSeq SNP data, (B)

Average phenotypic within accessions distances for 36 accessions of sorghum and pearl millet and 35 accessions of pigeonpea, (C) Average genotypic within

accession distances for each 36 accessions of sorghum, pigeonpea, and pearl millet estimated from DArTSeq SNP data, (D) Shannon diversity within accessions for

each 36 accessions of sorghum, pigeonpea, and pearl millet estimated from DArTSeq SNP data.

case lack of farmers’ selections and its obligatory to be highly
diverse as these are evolving under natural selection.

Comparing diversity of the three crops in our study,
heterozygosity (Figure 8A), phenotypic (Figure 8B), and
genotypic (Figure 8C) within accession diversity of sorghum
were notably low for most of its accessions, intermediate for
most of the accessions of pigeonpea and followed a more stable
trend around the maximal values for pearl millet. Similar to
the molecular within accession distances, Shannon diversity
revealed diversity estimates, scaled over the higher values for
pearl millet, followed by an intermediate in pigeonpea and lower
estimates for sorghum (Figure 8D). However, in sorghum and
pigeonpea both highly diverse and highly uniform accessions
with maximal and minimal estimates of genotypic distances
and Shannon diversity were observed. The higher diversity
estimates indicate the presence of higher variability within
accessions. In case of pigeonpea most of the accessions were
found to have molecular within accession distances <0.250
except two accessions viz., ICP 10880 (0.348) and ICP 10889
(0.393). On further investigation into the individual plant
within accession distances of these accessions, it appeared that,

some individuals within these accessions were diverse from
all the other individuals of the respective accession. Such that,
the accession ICP 10880 had two individuals that were highly
divergent from all other individuals by a mean distance of
0.410 and 0.434. Also these individuals were found to cluster
separately in hierarchal clustering. Same for the accession ICP
10889, where some individuals were highly divergent from
the other. In case of sorghum, most of the accessions had a
molecular within accession distances <0.250 except three wild
accessions viz., IS 10897 (0.316), IS 14485 (0.329), IS 18833
(0.342) and one landrace IS 27325 (0.310). In the landrace IS
27325, it can be seen that the individuals are divided into three
subgroups in hierarchal clustering. Thus, higher diversity in
some landraces of sorghum and pigeonpea can be due their
pollination behavior, which ultimately influences the population
substructure. The lower outcrossing in these crops offers the
higher probability of fixation of various alleles within a fewer
members or individuals, restricting the frequency/occurrence
of some allele within a small group of a landrace population,
thus gradually over generations, forming distinct subpopulations
within groups. These varied groups of individuals are however
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not phenotypically variable enough to consider it as separate
population, but however assimilated a genetically distinct
fingerprint from various elements throughout the course of
evolution. Similar cases of extreme values of low and high
diversity were previously encountered by researchers. Zeven
(1998) emphasized the low diversity and increased homozygosity
in inbreeding accessions and also explained the influence of
farmers’ selection and sampling strategies for reduction of
diversity in landrace populations. Adugna (2014) andWestengen
et al. (2014) found both high and low within-population diversity
in sorghum landraces cultivated in Ethiopia and reasoned the
low within landrace diversity could be due to farmers’ sampling
during migration, as farmers tend to carry few heads during
migration and settlements.

Based on the level of diversity within each accession of
different crops, appropriate conservation and regeneration
strategy should be followed to conserve the genetic integrity
and diversity of landraces. ICRISAT genebank follows various
pollination control and sampling strategies to maintain
the genetic integrity and diversity within accessions, while
regenerating different crops. Theoretically, selfing will be a good
strategy to maintain the genetic integrity and diversity in self-
pollinated crops and often-cross pollinated crops (out-crossing
>5%), because of the low effect of inbreeding depression, and
to preserve alleles within the population. In cross-pollinated
species like pearl millet, sib mating is the best strategy to
mimic the random mating, and for that ICRISAT genebank
performs cluster bagging (bagging few panicles of different
individuals of the same accession) that reduces the effect of
inbreeding depression. However, in both cases, the appropriate
population size needs to be ensured while regeneration for
capturing the rare alleles. Small sample sizes while regenerating
landraces may lead to genetic drift which results in the loss
of some rare alleles. Crossa (1989) based on his results on
stimulated populations, reported a practical system for maize
regeneration, wherein the author discussed that the ideal system
of regeneration involves equalizing the genetic contribution of
parents and avoiding small population sizes and, also Crossa
(1995) suggested a practical seed sample size of 130–200 in
monoecious crops for retaining the rare alleles in most of the
loci. FAO standards specify a sample size of 30 individuals in a
completely random mating population and 60 individuals for
completely selfing species to capture 95% of the alleles which
have a frequency >0.05 (FAO, 2014). However, in sorghum,
pigeonpea, and pearl millet, no detailed molecular studies were
done previously utilizing NGS tools to determine optimum
population size requirements for regeneration. Therefore,
we estimated the minimum sample size to capture 95% of
the SNP alleles spread throughout the whole genome with
an expected probability of 95% based on the least frequent
allele or the frequency of the rarest allele for each accession
following Crossa (1989). From our study, seed sample sizes
were found to be minimal for sorghum (47–101), and pigeonpea
(77–89), and high for pearl millet (155–203). The sample
size required to conserve the genetic integrity of germplasm
depends largely on the frequency of the least common alleles
or genotypes.

In conclusion, sorghum, pigeonpea, and pearl millet
accessions showed higher within and among accession diversity,
indicating that the regeneration strategies at ICRISAT genebank
are appropriate to ensure the genetic integrity of each accession.
Information from this study will support genebank curators in
understanding within accession variability and assists in devising
scientific sampling strategies (sample size) for regeneration to
maintain the genetic integrity and variability. This could also
help breeders in the utilization end to understand the population
dynamics and subpopulation structure, to forward the material
with appropriate breeding techniques.
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Supplementary Figure 1 | Cluster dendrogram with unbiased bootstrap

probability values for edges, with ward.D2 clustering for Gower’s distances, for

single plant phenotypic data (A) The cluster dendrogram of sorghum, (B) the

cluster dendrogram of pigeonpea, and (C) Cluster dendrogram of pearl millet.

Supplementary Figure 2 | Cluster dendrogram with bootstrap probability values

for edges, with ward.D2 clustering for Modified Roger’s distances, for single plant

genotypic data (A) The cluster dendrogram of sorghum, (B) the cluster

dendrogram of pigeonpea, and (C) Cluster dendrogram of pearl millet.

Supplementary Figure 3 | Values of BIC vs. number of clusters with maximum of

70 clusters in DAPC analysis for (A) sorghum, (B) pigeonpea, and (C) pearl millet.

Supplementary Figure 4 | Population structure using the posterior membership

probabilities, using K = 36 in DAPC analysis: (A) The population structure of

sorghum. (B) Population structure of pigeonpea and (C) Population structure of

pearl millet.

Supplementary Table 1 | List of accessions of sorghum used for phenotypic and

genotypic within accession diversity evaluation.

Supplementary Table 2 | List of accessions of pigeonpea used for phenotypic

and genotypic within accession diversity evaluation.

Supplementary Table 3 | List of accessions of pearl millet used for phenotypic

and genotypic within accession diversity evaluation.

Supplementary Table 4 | List of the quantitative and qualitative traits recorded in

sorghum, pearl millet and pigeonpea.

Supplementary Table 5 | Mean grouping by Student-Newman-Keuls Test of

sorghum, pearl millet and pigeonpea for all the quantitative traits recorded.

Supplementary Table 6 | Levene’s test for significant differences in

population variances.

Supplementary Table 7 | Bootstrapping values (Jaccard coefficient) of clusters

for phenotypic data.

Supplementary Table 8 | Number of DArTSeq-SNPs in each chromosome of

sorghum, pearl millet and pigeonpea after filtering.

Supplementary Table 9 | Bootstrapping (Jaccard coefficients) values of clusters

for DArTSeq SNP data.

Supplementary Table 10 | Probability of attribution of all the single plants in each

accession into different groups based on the discriminant analysis of principle

components on DArTSeq-SNP data (K = 36).

Supplementary Table 11 | Number of rare alleles preserved in the recommended

sample size estimated from DArTSeq-SNP data of sorghum, pigeonpea, and

pearl millet.
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