International Conference on
Innovations to Transform Drylands

21–23 February 2023
ICRISAT, Hyderabad, India

Abstract Book

Organised by

Co-organisers

ICRISAT
MINISTRY OF
AGRICULTURE AND
FARMERS WELFARE
BREAD
ICRAF
AGRA
T6PP099:
Molecular diversity in A. glabrata and prebreeding for introgressing novel resistance for stem rot and late leaf spot in cultivated groundnut

Veerendra Kumar HV1,2*, Sudini HK3, Sharma V1, Bomireddy D1,2, Senthil N3, Singh K3, Yogendra K1 and Pandey MK1*
1International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
2Agricultural College, Acharya N.G Ranga Agricultural University (ANGRAU), Tirupati, India
*Email: Manish.Pandey@icrisat.org

The perennial Arachis glabrata belongs to Rhizomatosea section with tetraploid (R2; 2n=40) genomes and is mostly known for forage, ornamental or soil conservation crop. The genotyping of 77 accessions of A. glabrata using Thermoﬁsher’s Agriseq assay containing 5000 genome-wide SNPs showed signiﬁcant diversity. In parallel, signiﬁcant phenotyping diversity was observed upon phenotyping these accessions for two most important diseases of the groundnut namely stem rot and late leaf spot. Among LLS and stem rot resistant sources, several accessions showed immune reaction but most of them possessed thick and rubber like leaf structure and thicker stem structure which might have served as physical barrier for these pathogens. Promising resistance sources were identiﬁed for LLS resistance (ICG 8161, ICG 8165, ICG 8166, ICG 8185, and ICG 8965) and stem rot resistance (ICG 8185, ICG 8167, ICG 8175 and ICG 8924) for potential use in pre-breeding. Interestingly, accession ICG 8168 has demonstrated resistance for both the diseases along with leaf structure similar to cultivated groundnut, therefore, we have initiated pre-breeding research for the introgression of resistance segments into elite background of high oleic genotype ICGV181008. Further research is required to understand the genetics and molecular mechanism of these resistance sources in addition to intensifying efforts in introgressing these segments in the genetic background of elite varieties.

T6PP100:
Genetic variation in CaTIFY4b improves adaptation to terminal drought conditions in chickpea

Barmukh R1,2, Roorkiwal M1, Garg V3, Khan AW1, German L1, Jaganathan D1, Chitikineni A3, Kholova J1, Kudapa H1, Sivasakthi K1, Samineni S3, Kale SM1, Gaur PM1, Sagurthi SR2, Benitez-Alfonso Y4 and Varshney RK1,3
1International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
2Department of Genetics, Osmania University, Hyderabad, India
3Murdock’s Centre for Crop & Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Australia
4Centre for Plant Science, School of Biology, University of Leeds, Leeds, UK
*Email: rajeev.varshney@murdock.edu.au

Chickpea (Cicer arietinum) is a major cool-season legume crop typically cultivated on residual soil moisture during the post-rainy season, and it is often exposed to a late-season water deﬁcit towards the end of the crop cycle. Identifying the genetic components underlying adaptation to terminal drought stress is important for improving chickpea productivity. Here, we present the ﬁne mapping and functional characterization of “QTL-hotspot”, a genomic region on linkage group 04 (CaLG04) in chickpea that harbours major-effect quantitative trait loci (QTLs) for key drought-adaptive traits. We report that a non-synonymous mutation in the plant-speciﬁc transcription factor CaTIFY4b regulates seed weight and organ size, and contributes to drought adaptation in chickpea. Ectopic expression of CaTIFY4b in the model legume Medicago truncatula increased root growth and architecture under water deﬁcit. Gene expression analysis indicated that CaTIFY4b might control organ size under drought in chickpea by regulating the expression of GRF-INTERACTING FACTOR1 (GIF1), a transcriptional co-activator of Growth-Regulating Factors. Phenotypic characterization of chickpea homozygous lines linked CaTIFY4b to the regulation of key physiological parameters, including pre-anthesis water use, transpiration efﬁciency, root architecture, and canopy development, enabling high yield performance under rainfed ﬁeld conditions. Taken together, our study offers new insights into the role of CaTIFY4b and diverse molecular and physiological mechanisms underpinning chickpea growth and production under terminal drought scenarios.